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Aufgabenstellung
Neue “sichere“ Programmiersprachen wie Go, Swift oder Rust wurden nicht nur für die
normale Anwendungsentwicklung entworfen, sondern sie zielen auch auf eine hochper-
formante Ausführung und Programmierung vergleichsweise systemnaher Funktionalität
ab. Eine attraktive Eigenschaft beispielsweise von Rust ist das gegenüber C und C++
deutlich strengere Speicherverwaltungsmodell, bei dem bereits zur Kompilierzeit der
Lebenszyklus und die Erreichbarkeit von Objekten sowie die Zuständigkeit für deren
Allokation und Deallokation wohldefiniert sind. Ganze Klassen von Programmfehlern wie
etwa Buffer Overflows oder Dereferenzierung ungültige Zeiger werden dadurch eliminiert
und die Programme mithin sicherer und robuster.

Aus diversen Gründen müssen Programme, die in sicheren Sprachen geschriebenen
wurden, aber oftmals auf “unsicheren“ Legacy-Code zurückgreifen. So bietet etwa Rust
über das “unsafe“-Sprachelement die Möglichkeit, Funktionen innerhalb von Bibliotheken
aufzurufen, die in fehleranfälligem C geschrieben sind. Leider werden die vom Com-
piler durchgesetzten Garantien der sicheren Sprache hinfällig, sobald im Code einer
C-Bibliothek ein Speicherfehler auftritt. Ein Schreibzugriff etwa durch einen ungültigen
Zeiger in der C-Bibliothek kann potenziell auch im selben Adressraum befindlichen Pro-
grammzustand modifizieren, der von Programmteilen in der sicheren Sprache und deren
Laufzeitsystem verwaltet wird.

Ein vielversprechender und am Lehrstuhl Betriebssysteme schon mehrfach erfolgreich
demonstrierter Ansatz zur Isolation “sicherer“ und “unsicherer“ Teile eines Software-
systems besteht darin, die Programmfunktionalität und Datenhaltung auf mehrere
Adressräume zu verteilen.

Im Rahmen der Master-Arbeit soll untersucht werden, wie ein derartiger Adressraum-
schutz zwischen Code und Daten des in der sicheren Sprache geschriebenen Programm-
teils und dem potenziell unsicheren Legacy-Code umgesetzt werden kann. Dabei soll
eine möglichst nahtlose Integration und Anlehnung an Konstrukte der sicheren Program-
miersprache angestrebt werden. Hierzu soll das Laufzeitsystem und gegebenenfalls der
Compiler entsprechend modifiziert und erweitert werden. Ziel ist es, dass Legacy-Code
weitgehend automatisch und transparent in einem separaten Adressraum ausgeführt
wird und der Datenaustausch zwischen den Programmteilen möglichst wenig Aufwand
für den Programmierer erfordert.

Die Lösung soll für eine geeignete Programmiersprache prototypisch umgesetzt und
anhand mindestens einer Beispielanwendung bewertet werden. Dabei sind insbesondere
die Performance sowie der Zugewinn and Robustheit und Sicherheit zu betrachten. Im
Rahmen der Arbeit kann davon ausgegangen werden, dass ein geeigneter “Sandboxing“-
Mechanismus (z.B. SELinux oder Systemaufruf-Filter) vorhanden ist. Die genauen
Anforderungen an diesen sollen aber analysiert und in der Arbeit diskutiert werden.
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Abstract

This work explores the design space of automated componentization for software written
in modern safe programming languages, with the goal of sandboxing unsafe legacy
libraries. It describes the design and implementation of Sandcrust, a Rust library
that enables the reuse of C libraries in Rust without compromising the memory safety
guarantees for safe Rust code. The Linux prototype shows that it is possible to safely
use complex C library interfaces, while providing seamless integration into the Rust
development ecosystem. The performance evaluation identifies a performance bottleneck
in Bincode, a popular Rust library, and quantifies the impact by implementing a common
use case without Bincode. Alternatives for abstracting a paradigm of componentization
in a programming language are examined for the use case of separating an untrusted
external component.
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1 Introduction

The reason we all like to think so well of others is that we’re all afraid for ourselves.
The basis of optimism is sheer terror.

— Oscar Wilde

Traditional systems programming languages like C expose attack vectors that threaten
the safety of the program. These vulnerabilities stem from a lack of memory safety
enforcement that may lead to unintended control flows and crashes to the point of
malicious code execution. This notwithstanding, C is still one of the most widely
used programming languages to date [1, 2]. Modern programming languages like Rust1

provide safe primitives and enforce strict rules for memory access and error handling at
compile time, effectively limiting the causes of unsafe behavior to bugs in the compiler
and runtime implementation. While this does not rule out the possibility of safety-
critical program failures, it guarantees the controlled execution of arbitrary software
written in safe Rust, if no safety-critical faults are present in the language implementation.

Because of their relative novelty, these languages often support reusing existing software,
especially by offering bindings to C-language libraries. However, because virtually all
commodity operating systems (OSs) use processes as the primary protection domain,
any vulnerability in a legacy library will affect the whole process, foiling the guarantees
provided by the new language.

Language-specific package managers provide easy integration of third party code. Rust
puts a huge emphasis on memory safety, but many third party libraries (crates) do in
fact use libraries written in C2. Rust’s crate system provides excellent modularization at
the source level, but this separation is not retained, as it is subject to the restrictions
expressed by Strackx and Piessens: „High-level programming languages offer protection
facilities such as abstract data types, private field modifiers, or module systems. While
these constructs were mainly designed to enforce software engineering principles, they
can also be used as building blocks to provide security properties. Declaring a variable
holding a cryptographic key as private, for example, prevents direct access from other
classes. This protection however does not usually remain after the source code is compiled.
An attacker with in-process or kernel level access is not bound by the type system of the
higher language“ [3, p. 3].

The rich tradition of privilege separation, especially in µkernel-based operating systems,
has as of yet failed to be reflected in application development. Modern languages like Rust
and Go3 provide first class abstractions for concurrency. But the lack of stringent access
1 https://www.rust-lang.org/
2 As an illustration: as of this writing, crates.io lists 1209 crates depending on the libc crate:
https://crates.io/crates/libc/reverse_dependencies

3 https://golang.org/
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1 Introduction

restrictions to OS resources leads to an enduring dominance of monolithic applications
and the absence of advanced language abstractions for privilege separation.

In the face of widespread vulnerabilities, some high profile applications like web
browsers have employed sandboxing to contain especially vulnerable software components.
This mimics composed multimedia applications as found in L4 µkernel based DROPS [4]
by manually setting up a restricted environment for processes by the unrestricted main
application.

Safe languages like Rust are gradually being used to replace unsafe components like
the MP4 decoder in the Firefox browser4 and there is a project to automatically convert
C code to Rust5. Rust is being ported to µkernel OS’s like the Genode OS Framework6

and seL47, and even used to build a new µkernel OS8. Still, as Jamey Sharp has remarked,
the pressure to ensure not merely safety but correctness may make the reuse of an
existing component preferable over a rewrite of that component in a safe language [5].

A vast body of research has explored the disaggregation of monolithic software, but
widespread adoption of these techniques is impeded by the amount of manual conversion
work, wanting integration in existing development toolchains, and reliance on custom OS
extensions. Recent operating systems include abstractions that cater to the demand for
sandboxing. The effect of modern programming languages and toolchains on software
disaggregation has gone unexamined until now.

The key motivation for this work is that modern high level languages open up a new
design space for automated sandboxing of unsafe software components. This design space
is explored with a focus on integration with the existing Rust ecosystem and language.
Previous efforts to contain Rust components with unsafe code have been deprecated
upstream9. The goal of this work is to fill this gap, providing easy to use isolation
of untrusted legacy components by executing them in a sandbox. This enables safe
Rust programs to use of existing software written in unsafe languages like C without
invalidating Rust’s memory safety guarantees. With the Sandcrust (Sandboxing C in
Rust) isolation crate, a prototype implementation is provided and its security properties
and limitations for use with real-world legacy libraries are evaluated.

The remainder of this work is organized as follows: The next chapter provides a
background on theoretical concepts, related work and the implementation environment.
Chapter 3 discusses the assumptions and design of the prototype. The implementation
is detailed in Chapter 4 and the prototype evaluated in Chapter 5. Chapter 6 concludes
and gives an outlook on possible future directions.

4 https://hacks.mozilla.org/2016/07/shipping-rust-in-firefox/
5 https://github.com/jameysharp/corrode
6 https://genode.org/documentation/release-notes/16.05
7 https://robigalia.org/
8 https://www.redox-os.org/
9 https://internals.rust-lang.org/t/safe-rust-sandboxing-untrusted-modules-at-api-level/
1505
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2 Technical Background

To the uneducated, an A is just three sticks.
— Winnie the Pooh

This chapter introduces key theoretical concepts in Section 2.1, discusses related work
in Section 2.2, and gives an overview on important aspects of the implementation
environment in Section 2.3.

2.1 Theoretical Concepts

After a differentiation of unsafe software components, this section will turn to a solution
of the problem and introduce the principles and practice of privilege separation.

2.1.1 Unsafe Software Components

As a starting point, we form a concept of safety following Avizienis et al., who define
it as „absence of catastrophic consequences on the user(s) and the environment“ [6,
p. 13]. But what leads software to cause catastrophic consequences? An undiscerning
end user might mistakenly execute malware, whose sole function serves an attacker,
causing catastrophic consequences for the user. A component, however, is included in
software, because it can establish desired functionality. Unsafe behavior is a severe form
of failure: non-compliance of a system to its agreed function. Usually unintended, this
failure is caused by a fault, or bug if a programming mistake, that has led to an error in
the state of the system.

The naïve response to that is a call for pure, bug free software, but it is not that easy.

Fault metrics. Various metrics have been proposed to quantify the number of faults,
and by extension the safety of software. In terms of quantity, the notion that the amount
of faults is correlated to the Source Lines of Code (SLOC) [7, 8], seems to date back
to work by Akiyama in 1971 [9]. It is countered by Ferdinand’s detailed mathematical
analysis in [10] that concludes that even though componentization may increase the
absolute size of the program, it helps reduce the number of programing errors. This
conclusion, however, was criticized along with many other metrics by Fenton and Neil [11].
They propose Bayesian Belief Networks (BBNs) as a solution to the problem [12], while
Nagappan, Ball, and Zeller propose a combination of traditional metrics [13].

Whatever the specific metric, the authors agree in that there is a correlation between
some measure for complexity and the number of faults. Some software authors conclude

3



2 Technical Background

that “small“ software is the solution to the problem1, but while badly written software
obviously is more prone to errors, their purist approach simply cuts out the features or
convenience that are required of more complex software, and their software is therefore
often limited in use to a circle of enthusiasts.
Language safety. When a software component is used for the complexity of the problem
it solves, safety-critical errors need to be eliminated by limiting the consequences of errors
to safe program states, or disallowing program code that may exhibit unsafe behavior.

Unfortunately, more traditional languages, especially C and by extension C++, offer
little towards that path, contrary to modern languages like Rust, as will be explored in
detail in Section 2.3.1.

When unsafe software does not generally exhibit unsafe behavior, it must be triggered
directly or indirectly by program input. In C, writes to memory are not validated by
design, which may allow input to directly overwrite memory. Other problems include the
lack of memory pointer sanitation, or an integrated error handling mechanism. These
design omissions can often be exploited for code injection [14, 15, 16, 17, 18], while
advanced countermeasures on the system level like address space layout randomization
(ASLR) [19, 20] or memory that is exclusively writeable or executable [21] are not
always effective. Even compiler authors do often not agree on the semantics of the C
language [22].

When many of today’s available software libraries are written in unsafe languages,
there needs to be a way to limit the scope of unsafe behavior.

2.1.2 Privilege Separation
Privilege separation is the theory and practice to limit the power of a software component
to the privileges necessary to serve its purpose. Before getting an overview of the practical
work in the field in the next section, this section introduces the underlying theory.
The Principle of Least Privilege. In their classic paper The Protection of Information
in Computer Systems from 1975, Saltzer and Schroeder describe the Principle of Least
Privilege as follows:

Every program and every user of the system should operate using the least
set of privileges necessary to complete the job. Primarily, this principle limits
the damage that can result from an accident or error. It also reduces the
number of potential interactions among privileged programs to the minimum
for correct operation, so that unintentional, unwanted, or improper uses of
privilege are less likely to occur. [23, p. 1282]

Componentization. Componentization is the disaggregation of software into functional
components according to this principle. Besides providing the base for privilege separation,
componentization may enable concurrency in execution or development through a new
software design, at the expense of additional component interface complexity.
1 Prominent proponents include Daniel J. Bernstein (https://cr.yp.to/djb.html), Felix von Leitner
(https://www.fefe.de/dietlibc/diet.pdf) and the contributers to suckless.org projects (https:
//suckless.org/philosophy)
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Trusted Computing Base. A componentized system relies on the Trusted Computing
Base (TCB) to ensure that least privilege of components is enforced. Initially defined by
Rushby as „the combination of kernel and trusted processes“ [24, p. 13], the expanded
definition in The US Department of Defense’s “Trusted Computer Systems Evaluation
Criteria“ [25, p. 66] gives a better idea of it’s range:

The heart of a trusted computer system is the Trusted Computing Base (TCB)
which contains all of the elements of the system responsible for supporting
the security policy and supporting the isolation of objects (code and data)
on which the protection is based. [...] a TCB should be as simple as possible
consistent with the functions it has to perform. Thus, the TCB includes
hardware, firmware, and software critical to protection and must be designed
and implemented such that system elements excluded from it need not be
trusted to maintain protection.

The strong consistency demanded in the TCB definition above is not provided by general
purpose systems. Instead, they limit themselves to restricting particularly untrusted
components.

Sandboxing. With the focus on unsafe software components in prevailing monolithic
software designs, such a restriction is called a sandbox. Initially used by Wahbe et
al. to describe isolation that is only software-defined [26], Goldberg et al. defined the
term to mean a combination of OS application programming interface (API) restrictions
supported by hardware isolation [27].

2.2 Related Work

Starting with systems that are designed for privilege separation, this section moves on
to efforts to contain software in a sandbox, before providing a classification of efforts to
componentize existing software.

2.2.1 Privilege Separation by Design

Systems designed with a focus on privilege separation form a standard by which to judge
attempts on componentizing monolithic software, so a brief overview over work in the
field is in order.

Capabilities, introduced by Dennis and Van Horn in [28], are unforgeable tokens to
a resource. Where Saltzer and Schroeder’s 1975 exploration of OS protection [29] still
describes a mixed use with Access Control Lists (ACLs), capabilities quickly became the
dominant concept for componentized systems.

Multics made use of hardware capabilities, but was eventually dominated by Unix,
limited to the “one job, one tool“ philosophy [30] and simple ACLs, when computers
lacking the hardware capabilities envisioned in pure capability systems like PSOS [31]
and lately revived in CHERI [32], gained widespread use. Microkernel operating systems
continued the tradition and implemented object capabilities in software: starting with

5
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Hydra [33]; Mach [34], L4 [35, 36], EROS [37] and many others explore the design space
of maximum privilege separation and minimal TCB.

Meanwhile, componentized software for commodity OS’s like qmail2 or Postfix3 had
to employ a combination of different user and group IDs and ACL protected data to
achieve any privilege separation. Recently, OS vendors support compartmentalization as
part of the API, like Apple’s XPC4.

Several solutions have been proposed that avoid traditional process-based protection
domains altogether: Banerji, Tracey, and Cohn propose services dynamically mapped
as libraries via segments as a way to implement services while preserving protection
boundaries [38], similar to the overlapping scheme in Opal [39]. The Singularity research
OS uses Software-Isolated Processess (SIPs) with a sealed process architecture [40] albeit
also supporting hardware isolation [41].

This is in concept similar to some forms of sandboxing which is the subject of the next
section.

2.2.2 Sandboxing
The lack of privilege separation in the design of commodity software has been a growing
security concern in the face of increasingly complex software, like web browsers as an
ubiquitous application platform. Consequently, the initial work in this field contains
helper applications in the Netscape browser by restricting their access to system calls, a
technique refined in later work [27]. Where Jensen and Hagimont and various others
implement a reference monitor in user space using ACLs [42] and Jain and Sekar use
process tracing facilities [43], later work such as FreeBSD Jails [44], Systrace [45] and
Seccomp-BPF [46] has been implemented as extensions to the monolithic kernel.

The most prevalent work to date is SELinux [47]. It has gained notoriety for its
complex, defensive security policies and serves as a prefect illustration of the difficulties
of fencing in a broad monolithic interface, compared to the powerful primitives found in
µkernel OS’s.

Explicitly „eschewing microkernel design“ [48, p. 98], Capsicum extends the Unix
API with capabilities to provide generalized sandboxing from within the application,
while Shinagawa, Kono, and Masuda blend user-level reference monitors with system
call interception to allow for flexible sandboxing strategies [49].

The Android Application Sandbox [50] is likely the most widely used sandboxing mecha-
nism in consumer software. It is conceptionally similar to early separation in web browsers,
which are in the process of migrating to more modern facilities such as Seccomp-BPF in
combination with additional abstractions we will describe in Section 2.3.2 [51].

On the server side of distributed applications, Docker5 and Rkt6 use the same sandbox-
ing mechanism for containerization. Flatpak7 (formerly xdg-app) mirrors this approach
2 http://cr.yp.to/qmail.html
3 https://postfix.org/
4 https://developer.apple.com/library/mac/documentation/MacOSX/Conceptual/
BPSystemStartup/Chapters/CreatingXPCServices.html

5 https://www.docker.com/
6 https://coreos.com/rkt/
7 http://flatpak.org/
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for desktop applications. External sandboxing of individual applications is provided by
Mbox [52], Firejail8 and systemd-nspawn9. They all have in common that the sandboxes
are employed for inter-application isolation.

A second tradition of work moves closer to the idea of componentization within a
program and uses Software Fault Isolation (SFI) to check isolation properties at run
time: Building on early work by Wahbe et al. [26] and subsequent extensions [53, 54,
55], XFI [56] rewrites Microsoft Windows binaries to honor Control Flow Integrity (CFI).
Returning to the theme of web browser extensions, the sandboxing of Native Client
(NaCl) [57] applications rests on SFI prior to execution in a runtime with additional
checks and has since been simplified in Rocksalt [58].

The state of system security has yielded some less obvious implementations of sand-
boxing. Nooks [59] is an in-kernel reference monitor to contain non-malicious faults in
Linux device drivers. The browser built on top of SubOS [60, 61] attaches a sub-user
id to downloaded files that are injected into the applications which open them, aiming
to restrict the damage caused by malicious input. Virtics [62] shirks off Portable Data
Format (PDF) rendering in the browser all the way to a virtual machine in an attempt
to limit PDF exploits.

Sandbox design trade-offs are discussed in more detail in [63] and a comprehensive
discussion of sandboxing is found in [64]. As the last examples show, sandboxing is a
valuable tool to enforce privilege separation in a legacy OS, but does not itself assist in
the process of the componentization of existing software, which is the last area and most
related work we will look into.

2.2.3 Componentization of Existing Software

Work spanning more than four decades has examined the componentization of existing
software from many different angles.

Protection Models for Componentization

A number of protection models have been identified, that in the following will be used
as a classification:

• Distribute across the network: Distribute components across the network for
improved availability or reliability.

• Protect sensitive information: Componentize software according to access to
information.

• Minimize privileged components: Separate a high privilege part and run the
rest of the software with lower privileges.

• Reduce the TCB: Reduce the TCB of a critical software component.
• Restrict untrusted components: Restrict the privileges of an untrusted soft-

ware component.
Table 2.1 gives an overview over the work available in each field. The results of one model
certainly have effects towards the others, but they still serve as a useful categorization.
8 https://firejail.wordpress.com/
9 http://0pointer.de/public/systemd-man/systemd-nspawn.html
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2 Technical Background

For example, an effort focused on minimizing a program’s privileged component will
result in the reduction of the TCB for other programs that the privileges extend to,
but it does not reduce the TCB of the componentized program: the minimal privileged
component retains its power, and components within the unprivileged rest of the program
still hold the same privileges over each other.

The remainder of this section will cover existing work in each field.

Distribute Across the Network

Perhaps surprisingly, the first published work in the field has a focus on distributing
software across a computer network. ICOPS’ raison d’être is the growing availability of
„micro computers in homes, offices, and schools, both to provide programmable intelligence
to terminals and peripherals, and to serve as local general-purpose computers for modest
processing tasks“ [65, p. 484]. This early work already uses advanced mechanisms: calls
to annotated procedures are trapped and a runtime is called instead to perform a Remote
Procedure Call (RPC). The challenges and limitations are also comparable to later work:
global variables are simply not supported, and „if data structures (or pieces thereof) are
passed between the mainframe and satellite, it must be done in such a way as to avoid
any pointer chasing of the ICP run-time environment [...]“ [65, p. 491].

CAGES [66], published shortly thereafter, shares the general concept and improves on
the limitations by offering somewhat advanced signaling and support for (annotated)
global variables. In 1999, Coign [67], designed for Microsoft’s Component Object Model
(COM), is first to propose libraries as the boundary at which to componentize applications.
JIF/Split [68] and Swift [69] are both network-focussed advancements of data-centric
approaches that will be introduced next.

Altogether, especially the early work in this field already offers valuable insight into
the challenges of breaking up data structures of formerly monolithic software. However,
although strong privilege separation is a side effect of distributed systems, the research
is not easily applicable to componentization in today’s highly different ecosystems.

Protect Sensitive Information

In 1997, Myers and Liskov approached componentization from a different angle by
attaching security labels to data to enforce properties like integrity or confidentiality [70],
resulting in JFlow [71], an extension of the Java programming language. The concept
was later iterated on with JIF [72], a dynamic version of JIF [73], the aforementioned
JIF/Split and a replication framework built on top of it [74].

Passe [75] has an unusual focus in manually adopting the Django web framework to,
trained with test cases, enforce privilege separation for web applications.

With Flume [76], Krohn et al. combine the concept of Decentralized Information Flow
Control (DIFC) with an access control mechanism at the system call level via deflection
to a reference monitor.

Bittau et al. describe the most radical data-centric approach to date. In Wedge [77],
the Crowbar dynamic analyzer identifies necessary access privileges and the program
is then split up into sthreads that operate on least privilege and invoke Callgates to
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Method manual annotate
functions

annotate
data

split on
syscalls

split on
library
boundary

distribute
across the
network

ICOPS
(1974),
CAGES
(1975)

JIF-Split
(2001), Swift
(2007)

Coign (1999)

protect sen-
sitive infor-
mation

Passe (2014) JFlow (1999),
JIF (2000),
Flume
(2007),
Wedge
(2008), Ar-
biter (2013)2

minimize
privileged
compo-
nents

OpenSSH
(2003), Priv-
man (2003)

Privtrans
(2004)

ProgramCut-
ter (2013)

reduce
TCB

Nizza
(2005)1,
Xen (2008)1

Coir
(2010)12,
TrustVi-
sor (2010)1,
Fides
(2012)12

SeCage
(2015)12

Proxos
(2006)1

restrict un-
trusted
compo-
nents

Chrome
(2009), uPro
(2012)2

Quarantine
(2011), Frac-
ture (2014)

Codejail
(2012)

1 use Virtual Machine Monitor (VMM) separation
2 run in same virtual address space
(all others) use process boundaries

Table 2.1: Classification of componentization work
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other sthreads to perform privileged operations. The application to common real-world
applications illustrates the complexity of a radical, data-centric approach: „For example,
enforcing a boundary between Apache/OpenSSL’s worker and master sthreads required
identifying 222 heap objects and 389 globals. Missing even one of these results in a
protection violation and crash under Wedge’s default-deny model“ [77, p. 317]. The
complexity is justified with catching design errors, were static analysis would assign
privileges that are not necessary during correct operation, but could for example be
exploited to leak data.

Lastly, Arbiter [78] is notable for its radically different separation mechanism. Focussing
on modern multi-threaded services, they adopt HiStar’s [79] label model for a special
shared Arbiter Secure Memory Segment kernel abstraction governed by a reference
monitor to provide data-centric privilege separation while supporting policies that
surpass the privileged vs. unprivileged model.

The value of this line of work lies in it’s radical application of the principle of least
privilege. Unfortunately, while unmatched in its analysis, the complexity of the data-
centric protection model comes close to a complete reimplementation of the existing
program10, which is prohibitive when existing components are reused precisely to save
implementation effort.

Minimize Privileged Components

Recent research has applied data-centric approaches to common server software, but it
is predated by work focussed on minimizing their privileged components.

Provos, Friedl, and Honeyman described their manual split up of the OpenSSH remote
access server in 2003 [81]. In the same year, Kilpatrick published Privman, a library
aiding manual privilege minimization for Unix servers [82].

Privtrans [83] is the first attempt to automate this process by annotating privileged
function calls and performing the split into a monitor and slave automatically, using
partially automatically derived wrapper functions to perform RPCs.

ProgramCutter [84] has a more data-driven approach. After labeling the privileges
of system calls, a program is represented as a graph of functions as nodes weighted by
SLOC and privileges, and edges weighted for the amount of data transfered between
them. The twofold goal is then to minimize both via dynamic analysis. However, for
each data type, serialization needs to be implemented by hand.

The practical focus of this protection model also constitutes its weakness: while well-
suited to common server software, the narrow focus on privileged operations fails to meet
the needs of compartmentalization of arbitrary component interfaces.

Reduce the Trusted Computing Base

While the last protection model is aimed at taking privileges away from much of the
program, therefore taking it out of the TCB, the orthogonal approach is to reduce the
external TCB that a trusted part of the program has to rely on.
10 This resembles Marx’ work on capitalism [80] remarkably, one should hope there is a bigger chance of

success.
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The Nizza Architecture [85] manually splits out critical parts of legacy applications
running virtualized on a µkernel OS into trusted wrappers or AppCores, reducing their
TCB by orders of magnitude [86]. As Weinhold and Härtig show with their implemen-
tation of the VPFS trusted file system [87, 88], with a careful security concept, the
underlying design can be leveraged to utilize the untrusted from the trusted part.

Murray, Milos, and Hand’s work on manually reducing the TCB of Xen [89] may seem
similar, but only serves the purpose of elevating its architecture to the standard set years
earlier by L4Linux [90].

Proxos [91] has an interesting take on TCB reduction by annotating system calls
to be routed to a Private OS depending on their arguments. Bootstrapping the thus
secured application is done via a newly introduced pr_execve system call, that behind
the scenes spawns the appropriate VM and sets up a fake process as an interface in the
Linux kernel.

Similar to the ideas laid out by Murray and Hand in [92], Coir [93] separates software
on the library level using a VMM to switch to a different protection domain when
a function in a library, ostensibly in the same logical address space, is used. Where
they propose a special page fault handler for trapping into the VMM to retain binary
compatibility, Coir uses function annotation to rewrite sensitive function calls to trap
into the VMM on demand.

Conceptually a mix between the previously mentioned work, TrustVisor [94] feeds
a manually created specification of sensitive functions into a special linker that will
place those functions in pages where access causes a trap into the VMM, so the execute
transparently in an environment secured by a dynamic root of trust for measurement
(DRTM).

Fides [3] has very similar objectives, but provides a more modern interface by extending
LLVM11 to support code annotation. A DRTM protected vault verifies Self-Protecting
Modules in the same address space that are executed on a security kernel.

Latest in the field, SeCage [95] extends the general theme by combining static and
dynamic analysis to identify secrets and using a trampoline to load new Extended Page
Tables (EPTs) via VMFUNC without VMM intervention.

As this section has shown, the goal of TCB reduction necessitates a radically different
runtime environment of the different components. This does not align well with the
stated preference of seamless integration with existing development setups, but is an
interesting direction for automatic separation to be explored in Conclusion and Outlook.

Restrict Untrusted Components

For the amount of error-prone libraries, exploration of the idea to restrict untrusted
components of an application has started surprisingly late.

Again, the first work in this field was done manually, by splitting off a sandboxed
rendering process from the Chrome web browser main program [96]. uPro [97] is also
based on manual splitting decisions, but generates wrapper functions automatically and
uses SFI to enforce separation within one address space with the uPro runtime.
11 https://www.llvm.org/
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Function level isolation boundaries are placed dynamically in Quarantine [98], depend-
ing on run time dependability, aided by manual conversion of C code to the Quarantine
Programming Model. Its successor Fracture [99] is similar, but with comprehensive com-
ponentization, restart and replication options, optionally derived from the Intelligent
Boundary Subsystem.

Codejail [100] is the most important precursor to this work. It restricts untrusted
libraries by interpositioning a trusted library by hooking into libc start main and
using LD_PRELOAD. Functions in the untrusted library are then run in a sandboxed second
process. Its main advantage is that it does not require changes to the main program,
nor to the untrusted library. However, this flexibility is paid dearly with the relatively
large number of manual programing necessary to implement a wrapper library or modify
the main program directly.

Especially Codejail deserves praise for their straightforward approach to a security
issue that plagues so much common software. As the first comprehensive solution to the
problem, it lacks integration into the development process, a focus of the design we will
explore in the next chapter.

2.3 Implementation Environment

This section gives a short introduction to the implementation environment, specifically
the Rust programming language and Linux sandboxing mechanisms.

2.3.1 The Rust Programming Language and Runtime

Rust was chosen as a programming language, because it provides strong memory safety
guarantees as well as a Foreign Function Interface (FFI) to interface with existing
libraries written in less safe programming languages like C.

Memory Safety Quarantees

Rust is statically typed [101] and its standard library types go to great lengths to ensure
that memory errors like out-of-bounds accesses are not possible, thus eliminating whole
classes of vulnerabilities common in C and C++, as described in Section 2.1.1.
Traits. In Rust, traits are often used to signal some form of functionality of a data type,
similar to a class implementing an interface in object-oriented programming languages.
Extending the concept, Rust has a number of built-in special traits that are used to
provide generic behavior of a data type by implementing a function that is automatically
called in certain situations. Additionally, structs as a composite of simple types can
automatically derive traits if implemented for their member types.
Variable lifecycle. At first glance, Rust exhibits little difference to a modern proce-
dural programming language like Go. This changes at the first try of re-assigning a
variable, because variables are read-only by default. Rust uses Resource Acquisition Is
Initialization (RAII). This is the foundation for Rust’s memory safety, since it rules out
uninitialized variables. The other end of a variable’s life cycle is defined by Lifetimes,
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which are calculated out of a binding’s scope via Lifetime Elision for common cases
or explicitly provided to resolve ambiguities; and which ensure that resources will be
freed deterministically in the reverse order of their introduction, preventing use-after-free
errors [102].

On a semantic level, the Rust standard library enforces explicit error handling by
use of the Option and Result return types that require explicit matching on the result
or error condition; or at least the call of the unwrap() method, which will panic and
terminate the program in a controlled way in case of error.
Concurrency. As a cornerstone of concurrency, passing variables into a different scope,
like most usually done by passing arguments to a function, moves the variable binding into
that scope, depriving the original scope from access. This strict notion of Ownership [103]
is necessary to extend the protection from use-after-free errors to concurrently running
program routines. To allow for retaining a variable after use in a function call, References
can be used to borrow the variable [104]. At this point, the explicit annotation mutable
of variables comes in useful as it allows for compile-time detection of reader-writer race
conditions. As references are still quite inconvenient for simple function calls, most
primitive types implement the Copy trait that will automatically pass the variable by-
value instead of moving it into the called function. This is both convenient and an
optimization for all types whose memory representation does not exceed the pointer size
of the platform.
Pointer types. To allow for dynamic resource sharing of complex data types, Rust has
a number of pointer types that implement traits like Send or Sync [105] and provide
reference counting and mutual exclusion for the data type they encapsulate [106]. This
is where the Drop trait comes in handy, as it allows for handling of any custom behavior
when a variable of that type goes out of scope, like decreasing a reference count and
freeing the encapsulated resources when it hits zero.
Implementing primitives. As the guarantees are not provided by the hardware,
they need to be implemented in the Rust compiler and runtime. The unsafe keyword
allows the use of primitives that do not adhere to these safeguards in a transparent and
documented way [107].

Foreign Function Interface

A foreign function interface consists of a way to adhere to the foreign calling convention,
a way to interface with the foreign binary and a native representation of foreign primitive
data types.

Rust has additional attributes to extern blocks to provide its FFI [108]. Because of its
prevalence, relative portability and susceptibility to errors with severe safety implications,
we will focus on the interface to C, which is also the default.

A link attribute like #[link(name = "owfat")] on the external API declaration
instructs the linker which external library to link to, similarly to a -lowfat linker flag
in C development.

A comparison of disassembled binaries shows that the resulting code is equivalent to
calling a dynamically linked function in C, in that it puts the function arguments on the
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stack according to the C calling convention and calls the runtime linker to resolve the
called function.

To guarantee compatibility, a #[no_mangle] attribute is provided to enforce compati-
bility for Rust structs and functions and the external libc crate provides Rust definitions
for common C data types.

2.3.2 Sandboxing in Linux-based Operating Systems
Although the implementation of a suitable sandbox is out of the scope of this work, it
is important to know the mechanisms available to build a viable interface to a suitable
sandbox.

Namespaces

Namespaces are the prevailing abstraction for sandbox implementations on Linux. Since
version 3.8, Linux enables virtualisation of all major subsystems and makes the creation
of new namespaces available to userland without requiring superuser privileges [109].
The namespaces(7) manual page (available online at [110]) provides an concise overview
of the interface and the available namespaces.

The complexity of the Linux API makes it hard to abstract completely, in fact the
abstraction has even introduced new vulnerabilities [111]. While it is comprehensive
enough to offer a usable replacement for prior incomplete sandboxes built around ACLs,
it is not powerful enough to implement advanced mechanisms as the Arbiter [78] memory
management, a limitation not shared by more thoroughly abstracted µkernel designs.

System Call Filtering

As mentioned in Section 2.2.2, application-specific sandboxes often use Seccomp-BPF
to impose further restrictions on sandboxed processes. It is important to note that the
interface described in the seccomp(2) manual page (available online at [112]) can also be
used with normal user privileges, making it possible to create a comprehensive sandbox
from an unprivileged user space application in modern Linux systems.

This chapter shows that the features of recent programming languages and operating
systems have not been used in prior research. In the next chapter, we will introduce the
design of a compartmentalization solution that uses these features to integrate tightly
with the existing development ecosystem.
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Those who build walls are their own prisoners.

— Ursula K. Le Guin

As we have seen in the previous chapter, existing solutions to sandbox untrusted
components in monolithic software fall short of convenient programming interfaces. A
major redesign of the software’s architecture would require the very programming effort
that is the reason why most of today’s software does not apply privilege separation in the
first place. The solutions that do not require major software changes lack integration into
the application development toolchain: They require the installation of external software
and external policy specification, or source to source translation of application code. The
main design objectives are therefore to automate the mechanisms of separation using
the existing development ecosystem and to reduce the programming effort to a use of a
minimal API. These objectives shape a number of trade-offs in the design.

3.1 Protection Goals
In Section 2.1.1, we have defined an unsafe software component as one which may cause
catastrophic consequences to its users, although often, the impact is rather unspectacular.
Under the assumption that this un-safety is restricted to a specific part of the program
(the unsafe library), it makes sense to treat this part as an outside threat to the security
of the rest of the program and to analyse what protection goals an automatic sandboxing
solution should enforce against the unsafe component. We will again follow the definition
of Avizienis et al., where security is a composite of availability for service (only) for
authorized users, integrity as the absence of unauthorized modification and confidentiality,
„the absence of unauthorized disclosure of information“ [6, p. 13].

Preserving the integrity of the program is the primary motivation for this work. Once
set up, it is the role of the sandbox to contain unsafe behavior as a result of a critical
error to the unsafe component. The prerequisites and limitations of sandbox isolation
are discussed in Section 3.4.3 below.

There is a second form of integrity meaning „absence of improper system alterations“ [6,
p. 13], which cannot alone be guaranteed by the sandboxing mechanism: The state
changes in the main program through the unsafe function results are intentional and
authorized, and their integrity is not covered by a security mechanism against outside
threats. Ensuring the validity of the returned data structures is a core task of the
compartmentalization mechanism, specifically the Inter-process communication (IPC)
discussed in Section 3.4.2.

Integrity in the sense of semantically correct results seems impossible to achieve:
Because the unsafe component’s computation results are unknown, an improper result
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can not generally be detected. Similarly, from the perspective of the user of a library
interface, it may seem impossible at first to guarantee availability and reliability, as the
unsafe component is necessary for computation. The application may employ a time out
/ restart mechanism for availability and reliability. Similarly, integrity may be achieved
by consistency checks or redundant computation using different unsafe implementations
of an algorithm. The separation provided by Sandcrust can be utilized to accomplish
these protection goals in cases where before, an unsafe component may have left the
program in an unsafe state, unable to utilize such safeguards within its protection domain.

The last property, confidentiality, is difficult: On the surface, the sandbox guarantees
confidentiality of the information trusted to the unsafe component by limiting the unsafe
component’s interaction with the safe program to desired computation results. However,
side channel attacks as described in [113] are extremely difficult to defend against,
even cryptographic hardware isolation on the CPU itself like Intel’s SGX is not beyond
them [114]. Moreover, the unsafe component may be able to use its legitimate results to
leak information. This limitation is shared by many separation mechanisms with a focus
on integrity over confidentiality like Capscium [48], and even prominent data-centric
work, which, as remarked by Bittau et al. „[...] allows untrusted code to observe sensitive
data, but without sufficient privilege to disclose that data [...]“ at the price of „[...]
heightened concern over covert channels, and mechanisms the programmer must employ
to attempt to eliminate them“ [77, p. 309].

Sandcrust offers no defense against side-channel information leaks for data explicitly
trusted to the unsafe component, but provides a way to control the setup of the sandbox
such that it can be placed before making sensitive data available in the main program.
Sandcrust does guarantee confidentiality for all data whose access handles are introduced
in the main program after sandbox initialization, presuming a sandbox following the
specifications detailed in Section 3.4.3.

3.2 Threat Model

The protection goals show that Sandcrust’s design falls into the protection model of
restricting an untrusted component as defined in Section 2.2.3. We now detail a threat
model that informs the design described in the next sections.

1. At the core lies the observation that memory safety guarantees of modern program-
ming languages like Rust do not extend to any legacy libraries they may interface
with; to the contrary: in a single protection domain, a security exploit in a legacy
component is generally able to subvert the whole program, including its ostensibly
safe parts.

2. The next observation is that many security vulnerabilities happen in libraries
that in normal operation do not use communication primitives or change data
structures outside the arguments and return values of the functions they provide
and potentially state changes in the memory of their protection domain.1

1 This is not accurate in the strict sense, because execution has an effect on shared caches and it may
be desirable to allow system functions which change internal kernel state.
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3. Under that assumption, unsafe libraries will work in a sandbox that revokes all
privileges but memory management, communication with the original program
and a number of system calls deemed safe.2.

4. Given such a sandbox, a subverted library can interact with the original program
in the following unintended ways:
(a) crash or exit unexpectedly
(b) hang on input / invocation
(c) return no return value / output parameter values via IPC
(d) return a false number / false types of / corrupt output parameters and/or

return value via IPC
(e) return syntactically correct but semantically wrong results

5. A Trusted Parser on the side of the original program can handle cases (c) and (d)
without compromising the type system in the rest of the application. While it will
fail to gather appropriate results, it is assumed to do so in a controlled way.

6. Cases a, b and e can be handled in an application-specific way as described in
Section 3.1.

7. Everything not sandboxed by the system is considered trusted.
A critical reader may object to the trust by definition expressed in the last step, but the
security guarantees given by the high-level language form the basis for the distinction
between trusted and untrusted components in this work. Clean-slate designs like in
Minix 3 [116] offer much more fine-grained protection domains, but they exclude much
of the problem space by demanding a (manual) program redesign to a specific structure.

Note that the implementation of a sandbox as defined in step 3 is outside the scope of
this work. Extending the assumptions in step 2 for cases where a library needs to perform
IO to serve its purpose would easily be possible in a more holistic implementation, but
the interface to a (hypothetical) sandbox in the prototype lacks a way to specify more
fine-grained privileges.

3.3 Mechanism Placement
The focus of mechanism placement is on ease of deployment as a solution towards the
issue raised by Watson et al.: „Finally, it is clear that the single largest problem with
Capsicum and similar approaches is programmability: converting local development
into de facto distributed system development hampers application-writers. Aligning
security separation with application structure is important as well, if such systems are to
mitigate vulnerabilities on a large scale: how can the programmer identify and correctly
implement compartmentalizations with real security benefits?“ [48, p. 103]

The study of previous systems with the same protection model in Section 2.2.3 makes
it clear that they suffer worst from the intertwined data structures characteristic for
monolithic software in the same protection domain. Hence, we will approach compo-
nentization with a focus on handling these data structures: Codejail [100] has gone a
2 While most of the system calls listed in the syscalls(2) manual page amount to unauthorized system

modifications, there are some legitimate calls like nanosleep(2) that a sandboxed program may
perform [115].
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long way in achieving automatic separation, but with an external system to transform
an abundance of annotations of data structures and unsafe functions. Most of these
annotations are necessary, because of a problem already described many years earlier
by Brumley and Song: „We provide wrappers for common privileged calls instead of
automatically generating them from the source because we may not know statically how
to wrap a pointer argument to a call. Wrapping pointers requires knowing the pointer’s
size. Generally functions that take a pointer argument also take an argument indicating
the pointer’s size. Finding this out is easily done by a human, say by consulting the
appropriate man page, but is difficult to do with static analysis alone“ [83, p. 9].

The most obvious starting point to improve on this is the Rust compiler itself. Let us
examine if this limitation could be lifted: If the compiler was to track the size of any
pointer, it would need to keep track of size of the data pointed to for any Rust method
that returns a pointer. This may work for standard library types and methods like this:

let greet = "hello";
let hell = &greet[0..4];
let ptr_to_hell = greet.as_ptr();

Yet, a slightly more complex case like

let boxed_slice = (Vec::<i32>::with_capacity(10)).into_boxed_slice();
let slice_ptr = boxed_slice.as_ptr();

is unpleasant already (slice_ptr is 0x1, the length of the slice is 0).
Lastly, external crates may return raw pointers, like the ptr() method in memmap’s

API3, that such a mechanism will fail to obtain the size for.
Even for standard library types, a safe mechanism would need to convert pointers to a

Sized representation like a slice dynamically, with great care to detect all corner cases
correctly, a fragile detection at best, because it relies on unstable internal interfaces.
This detection would be part of the TCB, without enjoying the rigorous testing of the
standard Rust compiler.

All things considered, the complexity of such a mechanism is not justified, because it
does not solve the problem of providing a safe interface around unsafe functions entirely:
In addition to the general un-safety of raw pointer dereference that a direct re-use of C
function interfaces would propagate into the Rust part of the program, other sources of
unsafe behavior such as the blending of error codes and return values in C cannot be
handled without defining a wrapper function, a task which can partially be automated
using rust-bindgen4. This further restricts the usefulness of the compiler-based approach
to rare corner cases.

If a compiler modification would not yield improvements that justify diverging from
the mainline implementation, we should evaluate if a solution can be integrated into
the exiting development ecosystem: The problems faced by previous research make it
clear that a solution needs to be placed at a level of abstraction where the API of an
untrusted component is still accessible, i.e. where the Abstract Syntax Tree (AST)
of the program can be manipulated without resorting to external source to source
3 https://docs.rs/memmap/0.5.2/memmap/struct.Mmap.html#method.ptr
4 https://github.com/servo/rust-bindgen
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transformation. Another advantage of transformation on the AST level is that the FFI
introduced in Section 2.3.1 is readily available; as are data transformation frameworks
that will be covered in Section 4.2.

In an existing Rust development setup, a program’s AST can be manipulated from
two places: from macros and from compiler plugins. Rust macros match on an input of
Rust language tokens and place a valid transformation back into the AST [117]. As we
will see in Section 4.1, they are subject to a number of limitations, but they have the
advantage of being part of the stable Rust interface.

Compiler plugins come in two forms: as Syntax extensions and Lint plugins [118].
Syntax extensions are a more powerful form of AST manipulation that can run Rust
code instead of just matching patterns. Lint plugins extend the correctness checks of the
Rust compiler, but are unable to manipulate the AST.

Rust has a module system that provides crates to package a library of Rust function-
ality [119]. Both conventional macros and syntax extensions can be packaged in a crate
and used in a program. But there is a caveat: To ensure orderly development of Rust as
a relatively young language, Rust has the concept of stable, beta and unstable language
and standard library features that are supported by the respective version of the Rust
compiler and runtime. To function, syntax extension compiler plugins need access to
Rust’s internal compiler API, which will not stabilize to enable future development of
the compiler [120]. Therefore, compiler plugins cannot be used in stable versions of Rust.
To exhaust compatibility with existing Rust implementations, macros were chosen as
the interface to the program’s AST. A basic example of macros is shown in Listing 3.1.
We will discuss the inner workings of Rust macros in more detail in Section 4.1.

1 macro_rules! instrument_function {
2 (fn $f:ident($($x:tt)*) $body:block ) => {
3 fn $f($($x)*) {
4 println!("now we will increment a");
5 $body
6 }
7 }
8 }
9

10 instrument_function!{
11 fn inc_arg(a: &mut i32) {
12 *a += 1;
13 }
14 }

Listing 3.1: A basic macro example

3.4 Protection Domain Separation

The overview in Table 2.1 on page 9 has shown that the overwhelming majority of
the related work aiming to restrict untrusted components uses system processes as the
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boundary between protection domains. For seamless integration, we are bound to the
sandboxing primitives provided by the OS. The prototype is implemented on Linux, for
which, as outlined in Section 2.3.2, they are also based on processes as the protection
boundary.

While the Linux kernel’s large TCB has a relatively large attack surface, it allows for
evaluation on a system that is widely used from mobile and embedded consumer devices
to large data centers. In addition, the native, non-Rust Linux API interfaces used in the
prototype adhere to the POSIX standard5, which many competing operating systems
adhere to to a sufficient degree, so that the prototype should work on the majority of
commodity OS’s, including Microsoft Windows 10, which has gained a Linux-compatible
system call interface [121].

This section builds on a privilege separation model and IPC requirements to form the
basis for the requirements for an external sandboxing solution.

3.4.1 Privilege Separation Model
Starting from a macro that transforms the AST of a program, the desired outcome is a
program that spans across at least two different processes, one of them in a sandbox. On
Linux, new processes can only be spawned with the fork and clone system calls, although
the current standard library fork function internally calls clone [122]. To assume different
roles, the code needs to check the return value of the respective library function. At this
point, it makes sense that the trusted program resumes execution in the initial process
(the parent) while the untrusted part should be run in the newly spawned child process.

Watson et al. have noted „[...] that libraries cannot create and manage worker processes
without interfering with process management in the application itself - unexpected
process IDs may be returned by wait()“ [48, p. 99]. This issue is deemed minor because
Rust’s native std::process module does not implement a nonspecific wait function.
Instead, wait() is a method of a Child struct representing a specific Process ID (PID)
to call the waitpid system call [123] on.

There are three possibilities how the child process can transmute into a sandboxed
process, illustrated in Figure 3.1:
1. Execute a separate binary. The forked child process would run one of the library
function interfaces to the execve system call to replace the current process image with
a specified binary, optionally passing arguments or setting its environment. The first
advantage of this method is that memory and some other resources initially shared
between parent and child process will cease to available to the child process [124]. Second,
it is possible to invoke an external helper program such as one of the external sandbox
implementations mentioned in Section 2.2.2, to provide a generic setup before they in turn
invoke the new binary. The downside of this approach is that it fundamentally breaks
5 They are necessary, because Rust offers no built-in interface to clone/fork a process:
https://github.com/rust-lang/rust/issues/6930
The relevant specifications are:
http://pubs.opengroup.org/onlinepubs/9699919799/functions/pipe.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/fork.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/getpid.html
http://pubs.opengroup.org/onlinepubs/9699919799/functions/getppid.html
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Figure 3.1: Privilege separation alternatives

integration with the program’s toolchain, because a second binary needs to be built,
packaged and shipped; or that the original process needs to write out the binary prior
to invocation, which is cumbersome and may not even be possible, because execution
of software residing in user-writeable locations is discouraged for security reasons and
might be disabled on the target system.

2. Re-execute the same binary with a function switch. To get around the
limitation of the first approach, a function switch could be built into the binary, that,
depending on an environment variable or an invocation argument, starts executing the
code meant to run in the sandboxed process. Again, an external wrapper program can
be used to assist in setting up the sandbox. This is the approach taken by the Chromium
browser, where the main binary takes on different roles depending on an invocation
argument such as --type=renderer. To its disadvantage, this requires altering the
control flow of the program’s main function, where a different solution may be able to
only affect parts of the program that actually invoke an untrusted library function; and
this modification is impossible to inject with the macro interface chosen in Section 3.3.

3. Continue execution of the forked program. As the other two options were not
feasible for a low-friction integration via macros, the remaining option was to resume
execution and set up the sandbox in the forked child process. Besides the implications
for the sandbox interface, the key ramification is that with a few exceptions listed in
[122], any resources available to the trusted main program at the time of the fork are
also available to the child process unless it rescinds the access explicitly. We will discuss
the impact of this in Section 3.4.3. In another consequence of this design, Sandcrust
is unable to defend against any unsafe behavior stemming from failures in the library
initialization. For any non-malicious library that does not process input (e.g. reading a
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configuration file) as part of its initialization, unsafe behavior is not possible, because
the execution path is static and thus the same as in any working use of the library.

3.4.2 Inter-Process Communication

We will now briefly introduce the IPC design, because it affects the sandbox requirements.
The general requirements of an application distributed between at least two processes
can be spelled out as follows:

1. Update any state that may have changed in the trusted part of the program and is
required for executing a part of the program (usually a function) in the sandboxed
process (function arguments and mutable global variables of the library).

2. Request execution of a specific function in the sandboxed process.
3. Replicate any relevant changes in state (i.e. writeable foreign global variables,

function results and output parameters) as result of the RPC in the sandboxed
process in the trusted process and resume execution.

Sandcrust offers a choice of shared memory (SHM) and pipes for transmitting data,
but pipes are always used as a portable RPC synchronization mechanism. We will
contrast the IPC performance for both options in Section 5.4. In Unix-like OS’s, a pipe
is a unidirectional data stream provided by the OS and represented by a read and a write
file descriptor. This implies that it needs to be possible to convert any data type to a
stream, specifically, the IPC implementation can only work accurately on data types with
a known structure and size and will fail to work on pointers to unknown data structures.
The consequences of this limitation are evaluated in more detail in Section 5.2, but for
now it shall suffice to say that the wrapper placement discussed in Section 3.5.1 makes
this less of a concern as it may appear. From the data flow described above, it follows
that two pipes are needed to pass state in each direction.

3.4.3 Sandbox Prerequisites

We can now detail the requirements for an external sandbox. From the privilege
separation model in Section 3.4.1 follows that the sandbox needs to be set up from within
the trusted program, i.e. it needs to be available as a library. To satisfy the assumption
laid out in step 3 of the threat model in Section 3.2, a sandbox implementation would
need to restrict system calls to 6 :

1. Read and write from/to the respective ends of the IPC pipe file descriptors.
2. In-process memory management (i.e. the brk system call).
3. The exit_group system call for volunatary termination.
4. Select safe system calls like nanosleep7.

6 On Unix-like OS’s other than Linux, the sandbox additionally needs to allow the getppid() system
call. This is necessary to provide automatic termination of the sandboxed process when the parent
process terminates. On Linux, this is set up before sandboxing via prctl(), but because POSIX lacks a
generic solution to the problem, the generic implementation spawns a thread to poll for a change in
the parent process ID.

7 Some safe system calls (especially gettimeofday(2)) are actually handled via the virtual dynamic shared
object (vDSO) [125] and therefore always available.
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Depending on the nature of the untrusted software, more privileges like reading random
data from /dev/urandom may be required; or it may be desirable to allow writes to
stderr to print error message originating from the untrusted code. Sticking to the
assumption laid out in step 2 of the threat model, we limit the discussion to libraries
without the need for special privileges. In that scenario, the required interface is a library
function that, given the pipe file descriptors, sandboxes the calling process by applying
the restrictions outlined above. Beyond prototype design, this interface would need to
be extended to accommodate additional sandboxing policies or allow for a choice of
sandboxing solutions. With the current lack of any turn-key sandboxing solution in Rust,
the design of such an extension is a purely theoretical exercise and therefore left out of
the prototype implementation.

We have introduced Seccomp-BPF as a suitable solution to enforce these restrictions
in Section 2.3.2 and trust that a suitable interface can be constructed as a library,
potentially relying on an existing abstraction such as libseccomp8.

In-memory resources are outside of the scope of a system call based sandboxing
mechanism. From Shankar and Wagner’s overview [126, p. 2269], the following in-
memory resources deserve special consideration:

• Process memory mappings
• Shared memory segments
• The Unix environment

Both process memory mappings and shared memory segments may have implications
beyond the danger of information leaks discussed in Section 3.1, as the sandboxed
process may use them to compromise the integrity of the trusted program. Sandcrust has
no access to information about the memory layout at compile time, but offers explicit
management of the sandboxed process as a way to control the resources available in
program memory a the time of the fork.

This control can be extended to the Unix environment in a limited fashion: It is
effective if the sandboxed process is initialized before the introduction of (potentially
sensitive) environment variables. While the **environ data structure can be made
inaccessible using clearenv(3) [127], the environment inherited from the caller of the
main program still resides in the memory of the sandboxed process. The inherited Unix
environment could therefore also be subject to information leaks, which is a limitation
of the sandbox isolation.

3.5 Sandcrust Workflow
With all major design decisions in place, this section will explain the workflow of the
prototype. First, the requirements for compartmentalization are summarized, before
explaining the application flow and the API.

The stripped down example program shown in Listing 3.2 will serve as an illustration.
The example uses the memset(3) and time(2) functions from the C standard library.

The extern block in line 4 introduces the function declarations to Rust, automatically
8 https://github.com/seccomp/libseccomp
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1 extern crate libc;
2 use libc::{time_t, c_int, size_t, c_void};
3

4 extern {
5 fn memset(buf: *mut c_void, c: c_int, n: size_t) -> *mut c_void;
6 fn time(time: *mut time_t) -> time_t;
7 }
8

9 fn wrap_memset(buf: &mut Vec<u8>, fillnum: u8) {
10 let pbuf = buf.as_mut_ptr() as *mut c_void;
11 let buflen = buf.len() as size_t;
12 let c = fillnum as c_int;
13 unsafe {
14 memset(pbuf, c, buflen);
15 }
16 }
17

18 fn wrap_time() -> u64 {
19 unsafe {
20 let timep: *mut time_t = std::ptr::null_mut();
21 time(timep) as u64
22 }
23 }
24

25 fn main() {
26 let mut buf = vec![0u8; 256];
27 let fillnum: u8 = 161;
28 wrap_memset(&mut buf, fillnum);
29

30 let seconds = wrap_time();
31 println!("Seconds passed: {}", seconds);
32 }

Listing 3.2: Original API example program

marking them as unsafe, because it defaults to C language bindings. Wrapper functions
wrap_memset and wrap_time are responsible for encapsulating the unsafe behavior and
translating between native Rust data types and C types imported from the libc crate.
The most notable conversion is that of the Vec<u8> byte vector to a void pointer in line
10. Note that in Rust, it is safe to create, but unsafe to dereference a raw pointer.

3.5.1 Compartmentalization Requirements
Necessary Tasks

The requirements for automatically sandboxing an unsafe component can be summarized
as follows:

• Set up a sandboxed protection domain.
• Provide an IPC mechanism.
• Implement an RPC endpoint.

24



3.5 Sandcrust Workflow

• Update relevant program state (e.g. global variables of the library), if applicable.
• Marshall / unmarshall arguments and perform RPC calls.

Depending on the library, the constructed protection domain needs to be stateful in
order to preserve internal state of the unsafe library between library function calls.

Wrapper Placement

A close look at the example shown in Listing 3.2 reveals that calling functions through
the FFI requires unsafe blocks, a feature described in Section 2.3.1, suspending the
guarantees of the Rust language to deal with the unsafe pointers pervasive in C. It is
therefore advisable to sandbox the wrapper function instead of the original C function
call. A second reason is that the wrapper functions transform idiomatic Rust data types
to the Rust representations of C data types in the FFI function declaration, and some of
these transformations may have safety implications, such as the NULL pointer passed to
time() in line 21 of the example program.

3.5.2 Componentized Application Flow

The current implementation of Sandcrust provides two modes of operation which are
detailed hereafter, before discussing the API available to the programmer in the next
section. For variability of use, both a single-invocation and a stateful version of the
sandboxing automation have been implemented. We will first discuss the application
flow, illustrated in Figure 3.2 for a single-invocation componentization and then contrast
it with the stateful sandboxing implementation.

Sandcrust for Single Function Invocations

Annotating a function invocation replaces the original function call with code which

(a) Forks off a second process, for reasons described in Section 3.4.1, which:
(i) Sets up a sandbox, following the requirements set out in Section 3.4.3.
(ii) Runs the wrapped function.
(iii) Transfers output parameters and any return value back using IPC.
(iv) Exits.

(b) Incorporates the changed values back into the main program.
(c) Collects the child’s exit status and resumes the main program.

The advantage of this approach is its simplicity, but besides the need to annotate
every function call, there are other drawbacks:

1. A new sandbox is spawned for each function call, causing overhead.
2. Internal state of a called library is not preserved between calls.
3. Any missed invocation will execute in the protection domain of the trusted program.
4. Because of sandbox originates from a forked process, it inherits all data present in

the main program at the time of invocation.
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Figure 3.2: Sandcrust overview

Sandcrust for Stateful Sandboxing

To overcome the limitations of the “fire and forget“ approach, the stateful sandboxing
implementation works by annotation of the function definition. This transforms the
function in a way that it executes normally in the sandboxed process, but invokes a
wrapper function in the main program that will:

(a) Initialize a persistent sandboxed process in line with Section 3.4.1 if necessary by
setting up IPC as described in Section 3.4.2, forking off a process which is then
sandboxed and runs an RPC endpoint.

(b) Perform an RPC.
(c) Update any relevant state in the sandbox, as it may have changed since sandbox

initialization.
(d) Collect the results and continue execution.

In the sandbox, a loop waits for RPCs from the main program, calling a helper function
that:

(i) Applies the state updates in lockstep with the main program.
(ii) Runs the wrapped function.
(iii) Transfers writeable foreign global variables, output parameters and any return

value back using IPC.

We will revisit the details of the implementation in Section 4.3.
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3.5.3 Sandcrust API

After discussing the internal mechanisms, we now present the API available to the user
of Sandcrust.

The first step in using Sandcrust in a project is to declare dependency on it in the
project’s Cargo.toml. Next is importing the Sandcrust crate into the program, including
macros:

4 #[macro_use]
5 extern crate sandcrust;
6 use sandcrust::*;

With these prerequisites in place, let us now explore the different ways to use Sandcrust.

Sandcrust for Single Function Invocations

Once Sandcrust is set up, we just need to annotate the wrapper functions’ invocations
in our example from Listing 3.2 to run each in an ephemeral sandbox:

32 sandbox_no_ret!{wrap_memset(&mut buf, fillnum)};

34 let seconds: u64 = sandbox!{wrap_time()};

Because this mode of usage is intended for sandboxing a single function invocation,
this is where the annotation in form of a Rust macro has been placed. Annotations for
functions with and without return value differ, because the type of return values can not
be inferred automatically. The reason for this limitation is that the function declaration
is not known to the sandboxing mechanism.

Sandcrust for Stateful Sandboxing

The stateful sandboxing implementation works quite differently, compared to the single
invocation API. The modified example in Listing 3.3 shows that the annotations have
moved to the function definition, eliminating the need to annotate each invocation and
enabling return value detection.
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1 extern crate libc;
2 use libc::{time_t, c_int, size_t, c_void};
3

4 #[macro_use]
5 extern crate sandcrust;
6 use sandcrust::*;
7

8 extern {
9 fn memset(buf: *mut c_void, c: c_int, n: size_t) -> *mut c_void;

10 fn time(time: *mut time_t) -> time_t;
11 }
12

13 sandbox!{
14 fn wrap_memset(buf: &mut Vec<u8>, fillnum: u8) {
15 let pbuf = buf.as_mut_ptr() as *mut c_void;
16 let buflen = buf.len() as size_t;
17 let c = fillnum as c_int;
18 unsafe {
19 memset(pbuf, c, buflen);
20 }
21 }
22 }
23

24 sandbox!{
25 fn wrap_time() -> u64 {
26 unsafe {
27 let timep: *mut time_t = std::ptr::null_mut();
28 time(timep) as u64
29 }
30 }
31 }
32

33 fn main() {
34 let mut buf = vec![0u8; 256];
35 let fillnum: u8 = 161;
36 wrap_memset(&mut buf, fillnum);
37

38 let seconds = wrap_time();
39 println!("Seconds passed: {}", seconds);
40 }

Listing 3.3: Example program modified for stateful sandboxing

Advanced Usage of the Stateful Sandbox

Sandcrust for custom data types. It may be necessary to annotate custom data
types, for custom derive (described in more detail in Section 4.2):

#[derive(Serialize, Deserialize, PartialEq)]
struct CustomStruct {

x: f32,
}
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Explicit Sandbox management and respawn. To counter the issue of leaking
sensitive information raised towards the end of Section 3.1, it is possible to initialize the
persistent sandbox explicitly:

fn main() {
sandcrust_init();
let secret = "[redacted]";
[...]

}

To explicitly terminate the sandbox there is sandcrust_terminate() as an antithetic
function. Any attempt to run a sandboxed function after Sandboxed termination will
result in controlled program termination, unless the auto_respawn compile-time feature
is used, in which case a new persistent sandbox is spawned automatically.

Together, sandcrust_init() and sandcrust_terminate() can be used to shield
different sets of sandboxed functions from each other, although the prototype implemen-
tation only supports one sandbox at a time.
Setting the maximum data transfer size for SHM. If IPC over SHM is enabled
via the shm compile-time feature flag, it may be necessary to adjust the size of the shared
memory region from the default exported via SANDCRUST_DEFAULT_SHM_SIZE. To that
end, the Sandcrust API provides a specialized initialization function and an independent
setter function:

sandcrust_set_shm_size(512);

sandcrust_init_with_shm_size(512);

The changed size only comes into effect after a new sandbox in initialized.
Mutable foreign globals. Sandcrust has support for mutable foreign global variables
in the form of the sandcrust_wrap_global annotation:

sandcrust_wrap_global!{
#[link(name = "linkname")]
extern {

static mut variable1: ::libc::c_int;
static mut variable2: wrapable_type;

}
}

This annotation is currently restricted to one extern block with a link attribute and
a list of static mut declarations. This mainly limits the support to one external
library with mutable variables, but may enable important use cases, as experienced
by Watson et al.: „In adapting gzip, we were initially surprised to see a performance
improvement; investigation of this unlikely result revealed that we had failed to propagate
the compression level (a global variable) into the sandbox, leading to the incorrect
algorithm selection“ [48, p. 101]. Immutable global variables are not in need of special
handling and the use of mutable global variables in native Rust is unsafe and should be
avoided in the implementation of Rust wrapper functions for unsafe C library functions.

After this introduction of the abstract interface, the next chapter discusses the
prototype implementation.

29





4 Implementation
Why do I not wake up with the gin already in me

— Matthew Garrett

This chapter sheds light on challenges encountered during prototype implementation
and thereby illustrates the inner workings of the prototype outlined in Chapter 3. After
a brief introduction of the Rust macro system in Section 4.1, we will first revisit the
handling of function argument and return value types in IPC in Section 4.2 and finally
depict the challenges in creating a stateful sandbox out of simple annotations of a
monolithic program in Section 4.3.

4.1 Metaprogramming with Macros
Section 3.3 has explained the rationale for basing the prototype implementation on Rust’s
macro system. The idea to use macros was born out of the realization that a compiler
plugin would never work in stable Rust, and the assumption that metaprogramming in
the macro system might leverage sufficient changes to the AST to implant sandboxing
in the program just from the macro’s input. This implicates that monomorphization,
the generation of specialized code from a generic template, would have to be enough.
Thanks to Rust’s many ways of code reuse, of which Alexis Beingessner has written an
excellent overview on his blog [128], this is actually true albeit challenging, as we will see
in the following sections. Before, we will start with a basic introduction to the macro
system (a full introduction is found in [117] and a detailed description in Daniel Keep’s
extremely helpful The Little Book of Rust Macros [129]).

We have mentioned that Rust macros match and transform language tokens in the
AST. Given an identifier, the double macro in Listing 4.1 naïvely assumes the identified
object implements the Add trait and doubles it. When given a number of statements
separated by “;“, it prints the value of a freshly defined variable a before executing each
statement twice.

The order of the two match arms in line 2 and 3 is important, because the variable
a also matches a statement ($s:stmt) and the let statement in the match expansion
would then be used where an expression is expected in the assignment in line 15. This
will fail, because each macro expansion must result in a valid syntax tree. If we execute
the program as listed, it outputs the following:
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1 macro_rules! double {
2 ($i:ident) => { $i + $i };
3 ($($s:stmt);+) => {
4 let a = 42;
5 println!("we've got a as {}, right?", a);
6 $(
7 $s;
8 $s;
9 )+

10 };
11 }
12

13 fn main() {
14 let a = 1;
15 let two = double!(a);
16 println!("double {} is {}", a, two);
17 double!(println!("once more, a is {}", a); println!("really!"));
18 }

Listing 4.1: A macro example

double 1 is 2
we've got a as 42, right?
once more, a is 1
once more, a is 1
really!
really!

The conflicting statements about the value of variable a are a result of Rust’s hygienic
macro system, where „macro expansion happens in a distinct ‘syntax context’, and each
variable is tagged with the syntax context where it was introduced“ [117]. Therefore,
the println!() in line 5 sees variable a as defined in line 4, whereas the expanded
statements see variable a as defined in line 14.

Lastly, the example illustrates that macros are expanded recursively: the macro system
replaces a match and continues at the node of the macro, consecutively expanding new
macros (like println!()). We will see this pattern in action in Section 4.3.3.

4.2 Function Signatures and IPC

As briefly mentioned in Section 3.4.2, the initial design relied on shared memory, which
was implemented using a file in Linux’ /dev/shm RAM file system and mapped using
the memmap crate1.

This approach failed, because it was not possible to determine the size for complex
data types: Using ::std::mem::size_of_val()2 to determine the size and subsequently
1 https://crates.io/crates/memmap
2 https://doc.rust-lang.org/std/mem/fn.size_of_val.html
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transfer output parameters via the unsafe std::mem::transmute_copy() function3

worked well for primitive data types, but came to its limits with heap-based data
structures, which did not implement the Copy trait explained in Section 2.3.1. There is
a Clone trait, but for example for Vectors, it only clones the vector data structure, but
not the heap memory managed by it.

Without a generic mechanism available, the initial macro implementation around
function invocations introduced in Section 3.5 would need a compiler intrinsic to
get the type of an argument identifier. Such a function exists in the form of
std::intrinsics::type_name()4, but std::intrinsics is part of the unstable in-
terface, because it relies on internal workings of the compiler. Moreover, each type of the
standard library would have required a custom transfer implementation (each adding an
unsafe function to the TCB for compartmentalization); and passing custom data types
would simply be impossible.

A solution already exists when the problem is approached from a slightly different angle:
In the context of IPC, the problem can be paraphrased as a problem of serializing and
deserializing a data structure. Unfortunately, Rust does not offer a built-in equivalent for
serialization as exists in form of the special Send trait5, which is automatically assigned
by the Rust compiler to types that can be passed between threads. However, an external
solution is available in the form of Serde6, a popular ser ialization and deserialization
framework. Compartmentalized Rust software like the Servo web browser7 uses Bincode8

for encoding of data processed by Serde for IPC, and it has been successfully used to
solve the problem.

However, the initial evaluation of IO performance found that Bincode adds a dispro-
portionate overhead for simple data structures. To alleviate the impact on Sandcrust’s
performance, an optional optimization for byte vectors and slices can be enabled via
the custom_vec compile-time feature flag. We will contrast the performance to native
Bincode encoding in Section 5.4.2.

A simple reimplementation of the IPC mechanism using Bincode over a pipe resulted
in code reduction by 45% in the prototype. This is offset by the addition of the Bincode
deserializer and its dependencies to the TCB: The trusted part of the program relies
on correct parsing of the returned stream, as noted in step 6 of the threat model in
Section 3.2. Employing a widely used component in place of a custom solution is deemed
beneficial to security. As Meyer and Arnout have noted: „In software design, laziness
is a virtue: it’s better to reuse than to redo“ [130, p. 23]. The optional use of SHM as
a means of communication between processes may make it necessary to adapt the size
of the shared memory region to the maximum data size as explained in Section 3.5.3,
whereas the stream-based nature of pipes relieves the user from this task.

Serde makes use of Rust’s powerful trait system (described in Section 2.3.1) to
implement Serialize and Deserialize traits for all feasible standard library data structures.

3 https://doc.rust-lang.org/std/mem/fn.transmute_copy.html
4 https://doc.rust-lang.org/std/intrinsics/fn.type_name.html
5 https://doc.rust-lang.org/reference.html#the-send-trait
6 https://serde.rs/
7 https://servo.org/
8 https://crates.io/crates/bincode
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This restricts function arguments to data types supported in Serde, but for compound
data structures, Rust has another trick up its sleeve:

Procedural Macros [131] are a kind of compiler plugin stabilized with the release
of Rust 1.15 on the 2nd of February 2017, that allow for custom derive of traits by
deriving a generic implementation from the AST. This may sound complex, so here is an
illustrating example:

#[derive(Serialize, Deserialize, PartialEq)]
struct Entity {

x: f32,
y: f32,

}

#[derive(Serialize, Deserialize, PartialEq)]
struct World {

entities: Vec<Entity>,
}

Serde’s serde_derive crate now constructs implementations of the derived traits that are
braced in the supplied implementation for basic data types. While annotation of custom
data structures is necessary, the advanced features of Rust break it down to the derive
attribute, as opposed to the extensive annotations or wrapper implementations required
by prior work.

The API laid out in Section 3.5.3 includes two distinct macros for single function
invocations, sandbox!() and sandbox_no_ret!(), and mentioned that this complexity
in the API stems from the lack of access to the function declaration. Idiomatic Rust wraps
function results in an Option enum to indicate the possibility of absence in the form of
Some(T) for a result type T, or None. However, Rust’s type checking would (correctly)
refuse to assign a possible value of None to a result variable. Moreover, for functions
with return value, the return type needs to be specified for new variable declarations.
This is necessary as soon as different types are passed through Bincode, because then the
bincode::deserialize_from() function is virtualized at compile time, i.e. the compiler
expands the generic function definition for any type implementing the Deserialize trait
to a specific implementation for each data type used. The macro for stateful sandboxing
has access to function declarations and is therefore able to provide a simplified interface.

4.3 Implementing a Stateful Sandbox
This section details the implementation of Sandcrust’s stateful sandboxing, whose general
application flow was introduced in Section 3.5.2. Compared to the simplistic application
flow of single invocation wrapping, the stateful sandboxing posed three major challenges
to the implementor:

• Managing a global, persistent Sandbox from insular macro transformations through-
out the original source code.

• The implementation of an RPC endpoint.
• Ad-hoc generation of appropriate argument marshalling and unmarshalling routines

from within the macro interface.
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Figure 4.1 shows the call graph for sandboxing a function.

Figure 4.1: Sandboxing a function fn FUNC(arg: type){BODY} with Sandcrust using
default compile flags results in this call graph. Note that macro invocations
are resolved at compile time. Calling FUNC() from the main program as
illustrated in the top left corner results in an invocation of FUNC() in the
sandboxed process, depicted in the bottom right corner. Sandcrust modifies
the function declaration so that a call from the main program results in
an RPC to the SandcrustWrapper::FUNC() helper function, which in turn
invokes FUNC() in the Sandboxed body, where it runs BODY.

4.3.1 Managing a Global Sandbox

In a programming language like C++, creating a global object for managing the persistent
sandbox would be a straightforward matter of initializing a global variable from a
constructor. Rust supports global variables in the form of the static keyword, but only
allows initialization by a constant expression [132]. Initially, the global structure drew
on primitive types as a representation of global structures:

Each invocation of a wrapped function would check the value of the cmd_send in line
2 and set up the stateful sandbox, if necessary. Subsequently, it would set up a new
Sandcrust object with clones of the raw file descriptors derived from the global file
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1 pub struct SandcrustGlobal {
2 pub cmd_send: std::os::unix::io::RawFd,
3 pub result_receive: std::os::unix::io::RawFd,
4 pub child: SandcrustPid,
5 }
6

7 pub static mut SANDCRUST_GLOBAL: SandcrustGlobal =
SandcrustGlobal{cmd_send: 0, result_receive: 0, child: 0};↪→

Listing 4.2: Original global data structure

descriptors via the dup() function9, where they would be consumed into native Rust
File objects, used for IPC, and closed as the File objects went out of scope.

The lazy_static crate10 achieves a direct global representation of a dynamically set
up Sandcrust object by making ingenious use of Rust’s Deref trait to set up the global
object on first dereference: As can be seen from line 9 of Listing 4.3, the global object is

1 pub struct Sandcrust {
2 file_in: ::std::fs::File,
3 file_out: ::std::fs::File,
4 child: SandcrustPid,
5 }
6

7 lazy_static! {
8 pub static ref SANDCRUST:

::std::sync::Arc<::std::sync::Mutex<Sandcrust>> = {↪→

9 std::sync::Arc::new(std::sync::Mutex::new(Sandcrust::fork_new()))
10 };
11 }
12

13 pub static mut SANDCRUST_INITIALIZED_CHILD: bool = false;

Listing 4.3: Global Sandcrust object using lazy_static

secured by a Mutex. The second global object SANDCRUST_INITIALIZED_CHILD in line
13 is necessary, because the sandboxed process is forked from a Sandcrust method and
thus the Mutex is locked at the time of the fork. It is used in an “if“ statement in the
instrumented wrapper function to distinguish between sandbox- and main program side
invocation of wrapped functions. If true, a function invocation executes the original
function body. If false, Sandcrust is initialized (if the first call to a sandboxed function)
and Sandcrust’s RPC mechanism is invoked.

The Mutex provides thread safety, but at the cost of serializing parallel execution in
the main program if it uses sandboxed functions concurrently. This is a limitation of
the prototype, as its IPC mechanism in its current implementation is unable to handle
concurrent RPC.
9 http://man7.org/linux/man-pages/man2/dup.2.html

10 https://crates.io/crates/lazy_static
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4.3.2 RPC Endpoint Implementation
Conceptionally, the RPC endpoint is a simple loop. A key problem to solve is the
identification of the called function in an incoming RPC request, because the IPC
mechanism described in Section 4.2 is not able to serialize a function pointer, and custom
derive only works on structs and enums.

The solution is pretty much what any shrewd C programmer would have done in the
first place: Cast the function pointer to an array of bytes on the calling side and back to
a function pointer in the RPC loop. The calling side is displayed in Listing 4.4.

1 pub fn put_func_ptr(&mut self, func: fn(&mut Sandcrust)) {
2 unsafe {
3 let func_ptr: *const u8 = ::std::mem::transmute(func);
4 #[cfg(target_pointer_width = "32")]
5 let buf: [u8; 4] = std::mem::transmute(func_ptr);
6 #[cfg(target_pointer_width = "64")]
7 let buf: [u8; 8] = std::mem::transmute(func_ptr);
8 let _ = self.file_in.write_all(&buf).expect("sandcrust: failed to

send func ptr");↪→

9 }
10 }

Listing 4.4: Method to transmit a function pointer

And the RPC loop simply reverses the transformation via the get_func_ptr() method
displayed in Listing 4.5.

1 pub fn get_func_ptr(&mut self) -> fn(&mut Sandcrust) {
2 #[cfg(target_pointer_width = "32")]
3 let mut buf = [0u8; 4];
4 #[cfg(target_pointer_width = "64")]
5 let mut buf = [0u8; 8];
6 self.file_out.read_exact(&mut buf).expect("sandcrust: failed to read

func ptr");↪→

7 let func_ptr: *const u8 = unsafe { std::mem::transmute(buf) };
8 let func: fn(&mut Sandcrust) = unsafe { std::mem::transmute(func_ptr)

};↪→

9 func
10 }

Listing 4.5: Receive a function pointer and transform it back to a function type

This is necessary, because the alternative of using a form of lookup table to match
an identifier to a function is not realizable from a macro expansion: Each macro can
only provide a local transformation of the wrapped function’s AST and has no access
to information about the other wrapped functions. On the other hand, a global data
structure, even if initialized lazily as described in the last section, has no way to collect
information about the compile-time transformations. Therefore the issue had to be
solved with information local to the macro transformation.
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This example shows that Rust’s unsafe features are sometimes necessary for systems
programming, but unsafe blocks provide a clear indication of code that flouts Rust’s
memory safety guarantees and contain the parts of the code where safety guarantees
are provided by the programmer, instead of the compiler. The last piece of the puzzle
is how the generic function signature fn(&mut Sandcrust) translates to a call of a
specific function and will be examined in the next section.

4.3.3 Argument Handling Routine Generation
It must be borne in mind that all specializations of the Sandcrust library happen through
iterations of AST transformations when compiling the target program. Therefore, these
transformations must suffice to build a mechanism that enables the stateful sandbox to
correctly handle RPCs for all sandboxed functions when, for each function, transformation
happens locally without access to the AST of the other sandboxed functions. The
last section has introduced a simple mechanism to remotely call any function in the
sandboxed process, but provides no notion of what argument handling the function
entails. In consequence of this, any sandbox-side IPC needs to be contained in the
remotely called function body. This contradicts the notion that the function signature
of the wrapped function should remain unchanged, to dispense with any annotations of
the function invocations and to allow for recursive calls of a wrapped function within
the sandbox.

Obviously, what is needed is a helper function per wrapped function with a generic
function signature. One would assume that an AST modifying macro system provided a
way to generate new identifiers (e.g. func_wrapped()) and indeed, this is the purpose
of the concat_idents!() macro. Unfortunately, this macro is only included in Rust’s
unstable interface and what’s more, it is broken for use with new function identifiers11.

The solution depicted in Listing 4.6 re-uses the identifier by implementing a new
trait by the name of the wrapped function for the empty struct SandcrustWrapper
defined in the library crate. This works because the same-crate restriction on method
implementations are relaxed for traits12.

The newly defined trait function now forms the basis for the func pointer transformed
in the last section:

let func: fn(&mut $crate::Sandcrust) = $crate::SandcrustWrapper::$f;

The first macro in the function body in line 8 of Listing 4.6 pulls any global variables,
and the second macro in line 9 pulls the function arguments according to the argument
list ( $($x)*) passed into the macro.

We will now discuss an implementation detail of the third invoked macro in line 10,
sandcrust_run_func_global!(), which runs the function.
11 This is confirmed by many reports on the Internet of people facing the same problem:
https://github.com/rust-lang/rust/issues/12249
https://github.com/rust-lang/rust/issues/13294
https://www.reddit.com/r/rust/comments/3e09gn/macro_concatenate_identifiers/

12 For an illustration of the impressive capabilities of Rust traits, see this excellent article by Jonathan
Turner:
http://www.jonathanturner.org/2016/02/down-the-rabbit-hole-with-traits.html
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1 ($has_retval:ident, $has_vec:ident, fn $f:ident($($x:tt)*)) => {
2 trait $f {
3 fn $f(sandcrust: &mut $crate::Sandcrust);
4 }
5

6 impl $f for $crate::SandcrustWrapper {
7 fn $f(sandcrust: &mut $crate::Sandcrust) {
8 sandcrust_pull_global(sandcrust);
9 sandcrust_pull_function_args!(sandcrust, $($x)*);

10 sandcrust_run_func_global!($has_retval, $has_vec, sandcrust,
$f($($x)*));↪→

11 }
12 }
13 }

Listing 4.6: Generating a trait function for argument handling

To recap, the $f:ident($($x:tt)*) match includes the argument types, for
example func(a: i32, b: Vec<u8>). To run the function, the types need to be
stripped away to get a function invocation like func(a, b). This is achieved by the
sandcrust_strip_types!() macro. A straightforward implementation to simply trans-
form the function arguments would look like this: Lamentably, parsing arg into an

1 macro_rules! sandcrust_strip_types {
2 ($arg:ident : $var_type:ty) => ($arg);
3 ($arg:ident : &mut $var_type:ty) => (&mut $arg);
4 ($arg:ident : &$var_type:ty) => (&$arg);
5 (mut $arg:ident : $var_type:ty) => ($arg);
6 ($f:ident($($arg:expr),+)) => ($f(
7 $(
8 strip_types!($arg)
9 ),+)

10 );
11 ($f:ident()) => ($f());
12 }

Listing 4.7: A straightforward implementation of a type strip macro

expression in line 6 causes the match to become un-destructible [129], i.e. any subsequent
invocation sees arg as one AST node, so the recursive matches in lines 2-5 fail: The
“a: i32“ is one node and does not match $arg:ident : $arg_type:ty. This can be
avoided by preserving the arguments as a token tree (tt), but that in turn breaks the
repetition match in line 8.

Instead, Listing 4.8 shows the actual implementation.
A function without any arguments is matched by line 15. Line 14 starts the recursion

using Push Down Accumulation [133], and starts building up the result after the “->“.
This solves the problem of matching the inner argument list that was unsuccessfully
addressed with the broken recursion in lines 6-10 of Listing 4.7. Line 3 matches a function
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1 macro_rules! sandcrust_strip_types {
2 (($head:ident : &mut $var_type:ty, $($tail:tt)+) ->

($f:ident($($body:tt)*))) => (sandcrust_strip_types!(($($tail)+) ->
($f($($body)* &mut $head,))));

↪→

↪→

3 (($head:ident : &mut $var_type:ty) -> ($f:ident($($body:tt)*))) =>
($f($($body)* &mut $head));↪→

4

5 (($head:ident : &$var_type:ty, $($tail:tt)+) ->
($f:ident($($body:tt)*))) => (sandcrust_strip_types!(($($tail)+) ->
($f($($body)* &$head,))));

↪→

↪→

6 (($head:ident : &$var_type:ty) -> ($f:ident($($body:tt)*))) =>
($f($($body)* &$head));↪→

7

8 ((mut $head:ident : $var_type:ty, $($tail:tt)+) ->
($f:ident($($body:tt)*))) => (sandcrust_strip_types!(($($tail)+) ->
($f($($body)* mut $head,))));

↪→

↪→

9 ((mut $head:ident : $var_type:ty) -> ($f:ident($($body:tt)*))) =>
($f($($body)* $head));↪→

10

11 (($head:ident : $var_type:ty, $($tail:tt)+) ->
($f:ident($($body:tt)*))) => (sandcrust_strip_types!(($($tail)+) ->
($f($($body)* $head,))));

↪→

↪→

12 (($head:ident : $var_type:ty) -> ($f:ident($($body:tt)*))) =>
($f($($body)* $head));↪→

13

14 ($f:ident($($tail:tt)+)) => (sandcrust_strip_types!(($($tail)+) ->
($f())));↪→

15 ($f:ident()) => ($f());
16 }

Listing 4.8: Type strip macro implementation

with one “&mut“ argument, strips away the type and outputs a function invocation in place
of the macro, with the added argument. Finally, the first match in line 2 performs the
strip and recursive invocation, if there are still more arguments in the $($tail:tt)+
list. Lines 5 till 12 repeat the recursive process for other types of arguments.

After this field trip to the darkest corners of the macro system, we will return to the
end user’s perspective by evaluating the prototype in the next chapter.
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There ain’t no fate but what we take from the moment, wasted time is the only opponent.
— Sole and the Skyrider Band (Hello Cruel World)

This chapter evaluates the prototype. In Section 5.1, we contrast the integration into the
source code of an existing program with Rust language elements that denote nonstandard
forms of function execution. Section 5.2 compares the possible interactions between a
sandboxed library and the main program to execution in the same address space. Drawing
on case studies in Section 5.3, the performance of the prototype is evaluated in Section 5.4.

5.1 Language Integration

Table 5.1 demonstrates possible integrations of a sandboxing mechanism with various
Rust language elements. In the following, we discuss the adequacy of each element and
assess the suitability of the prototype’s syntax by comparison with the alternatives.
Override an existing keyword. This is not desirable for reasons including the stability
of the language and flexibility.
New link attribute. This would add a new link attribute, making sandboxed_lib a
new type next to the likes of dylib and static. Variations of this theme (like a new
attribute type protection="sandbox") would also be possible. This offers the highest
level of abstraction for an approach directly implemented at the library boundary, but
as we have seen in Section 3.5.1, wrapper functions are a necessity.
New Application Binary Interface (ABI) type. Replacing the (implicit)
extern "C" ABI type would put focus on the language divide, but is misleading, because
the ABI level is insufficient for placing a compartmentalization mechanism.
New function attribute. Extending existing functions attributes like #[inline]
would be the best fit semantically.
New keyword. This carries a similar meaning to a new function attribute, but extending
the narrow set of keywords is an intrusive change to the language and this option would
break the prevalence of extern for introducing external resources.
Closure-like annotation. This suggests a semantic similarity to closures, but is a
poor fit with traditional function syntax.
Current syntax. The current macro syntax is inferior to function attributes as the
most fitting abstraction, which are already widely used in Rust. It has the advantages of
making the sandboxing scope visually clear, and offering an indication of the mechanism
used for function transformation. While not offering the best semantical abstraction,
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Method Example

Override an existing keyword extern { fn c_func(); }

New link attribute #[link(name = "snappy", kind="sandboxed_lib")]
extern { fn c_func(); }

New ABI Type extern "sandboxedC" { fn c_func(); }

New function attribute #[sandboxed]
fn wrapper_func() {};

New keyword sandboxed { fn c_func(); }
or
sandboxed fn wrapper_func(){};

Closure-like annotation let retval = sandbox | | wrapper_func();

Current syntax (macro) sandbox!{fn wrapper_func()};

Table 5.1: Sandcrust language integration alternatives

the current syntax is still idiomatic for an instrumentation of existing Rust code. This
is emphasized by the syntax of the lazy_static extension introduced in Section 4.3.1,
which is depicted in Listing 4.3 on page 36. Implementing a new attribute is possible
with Syntax extensions, so it may be possible in stable Rust with a future incarnation
of Rust’s macro system. We will discuss future directions of the macro interface in
Chapter 6.

5.2 Library Interaction

To evaluate the forms of library interaction with the main program supported by
Sandcrust, this section follows the rundown of possible program-library interactions by
Wu et al. [100, pp. 863-864] and adopts the discussion to Sandcrust’s wrapper function
interface. Wu et. al. identify the following forms of interaction:

• By-value parameter passing and return
• By-reference parameter passing and return
• Global variable
• Function callback
• Long jump

By-Value and By-Reference Parameter Passing and Return. Sandcrust’s ability
to pass a data type rests on a native or derived implementation of the Serialize and
Deserialize traits of the Serde framework described in Section 4.2. This prominently
excludes raw pointers as parameters to the wrapper function. Given that the purpose of
the wrapper function is to provide a safe Rust interface to an unsafe C function, this
limitation is by design. The handling of C pointers in the wrapper, which is executed in
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the sandboxed process, makes any resulting tight interactions transparent to the sandbox
mechanism, so the full range of parameters and return values supported by Rust’s FFI
is supported by Sandcrust.

Global Variable. Sandcrust offers special support for mutable foreign globals - mutable
global variables defined in the C library - via the sandcrust_wrap_global!{} macro.
This is intended to facilitate the design of safe wrapper functions. The update mechanism
exhibits the same constraints on supported types as the general function interface, but
for use cases that do not require updates to the variable after initialization, it suffices
to set the global variable to the desired value before initializing the stateful sandbox,
effectively lifting any restrictions on global variables.

Function Callback. Function callbacks from a library function are supported within
the sandboxed process, as demonstrated in Section 5.3.2. The current prototype im-
plementation offers no support for callbacks to the main process. Chapter 6 outlines
how this can be implemented in future work. Closures as a Rust-specific way to pass
a function will likely not be supported by a future callback mechanism, which is no
limitation for wrapper functions concerned with providing a safe interface around a
legacy library, because the programming pattern is not supported by C.

Long Jump. The setjmp() / longjmp() mechanism provides “nonlocal gotos“, i.e. it
enables a function to jump back up the stack to a calling function. It causes undefined
behavior when the calling function has already returned at the time of the longjmp and
is prone to memory leaks due to the incomplete execution of the functions leading to the
jump [134]. While Rust’s FFI does not provide abstractions for the mechanism, it can
be used manually. A Rust function wrapping a C library relying on long jumps is able to
use the mechanism locally in the sandboxed process in the wrapper function and would
be able to utilize the function callback mechanism, once implemented. The second case
study in Section 5.3.2 shows how a Long Jump can be used within a wrapper function
without impairing the security guarantees of the safe part of the program.

Apart from supporting function callbacks into the main process, Sandcrust supports
all forms of library interactions necessary for providing a safe interface to unsafe C
libraries.

5.3 Case Studies

5.3.1 Snappy FFI Example

Our first example is based on the FFI example in chapter 5.9 of the Rust Book [135].
It is shown in Listing 5.1, with unchanged parts left out for brevity. The highlighted
lines designate additions or modifications of the original example. Lines 1, 2 and 5
import the Sandcrust crate. A missing wrapper function is added with lines 73-77, and
the invocation is adopted in line 80. Annotating existing wrapper functions with the
sandbox!{} macro accounts for the remaining highlighted lines.
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Altogether, using Sandcrust adds 14 lines and changes 1, amounting to 18% of the
original code base in this small example of 82 SLOC (by count of Cloc1).

1 #[macro_use]
2 extern crate sandcrust;
3 extern crate libc;
4

5 use sandcrust::*;
6 use libc::*;
7

8 #[link(name = "snappy")]
9 extern {

24 }
25

26 sandbox!{
27 pub fn validate_compressed_buffer(src: &[u8]) -> bool {
28 unsafe {
29 snappy_validate_compressed_buffer(src.as_ptr(), src.len() as

size_t) == 0↪→

30 }
31 }
32 }
33

34 sandbox!{
35 pub fn compress(src: &[u8]) -> Vec<u8> {

48 }
49 }
50

51 sandbox!{
52 pub fn uncompress(src: &[u8]) -> Option<Vec<u8>> {

70 }
71 }
72

73 sandbox!{
74 pub fn max_compressed_len(len: usize) -> usize {
75 unsafe { snappy_max_compressed_length(len as size_t) as usize}
76 }
77 }
78

79 fn main() {
80 let x = max_compressed_len(100);
81 println!("max compressed length of a 100 byte buffer: {}", x);
82 }

Listing 5.1: Rust FFI example with Sandcrust

1 https://github.com/AlDanial/cloc
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5.3.2 PNG File Decoding

The second example demonstrates a complex use case for Sandcrust. In line with Wu et
al. [100], libpng2 is used for its complex interface and impressive number of assigned CVE
IDs. To demonstrate the use of the stateful sandbox for complex libraries, the example
program uses global libpng data structures and provides multiple wrapper functions,
instead of hiding the complexity of libpng in just one decoding interface. Listing 5.2
shows the function signatures implemented to decode a PNG file. The full example is
shown in Listing A.1 on page 55ff. Except for the read_file function that reads the

fn read_file(path: &str) -> Vec<u8>;
fn png_init() -> Result<(), String>;
fn is_png(buf: &[u8]) -> bool;
extern "C" fn callback(callback_png_ptr: *mut png_struct,

buf_ptr: *mut u8,
count: png_size_t);

fn decode_png(png_image: &[u8]) -> Result<Vec<Vec<u8>>, String>;

Listing 5.2: Function signatures for PNG file decoding

PNG file into a buffer, all functions run in the sandboxed process set up by Sandcrust.
The png_init function initializes the library, indicating failure to the main program
with its Result return value. Next, is_png provides the main program with a way to
check if the file is in fact a PNG image. The callback function is called by libpng to
read the buffer, as it natively only supports reading a file from a file descriptor, which is
not available in the current Sandboxing model. To propagate errors encountered during
libpng decoding, decode_png uses the long jump mechanism, as displayed in Listing 5.3.

107 if 0 != setjmp(png_set_longjmp_fn(png_ptr, longjmp, jmp_buf_size)) {
108 return Err("read failed in libpng".to_owned());
109 }

Listing 5.3: Use of setjmp in decode_png

As explained in Section 5.2, using the setjmp / longjmp mechanism is highly unsafe.
However, libpng relies on it for error handling. Using Sandcrust, it is possible to restrict
all unsafe code to the sandboxed process. We will evaluate the performance towards the
end of the next section.

5.4 Performance
The performance of Sandcrust was evaluated on a Lenovo Thinkpad X250 with an Intel
Core i7-5600U CPU and 8 GiB of DDR3 memory running Rust 1.16 on Arch Linux with
a 4.9 Linux kernel. To measure raw Sandcrust performance, the Sandheap crate provides
2 http://www.libpng.org/pub/png/libpng.html
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an interface according to the sandbox implementation requirements of Section 3.4.3, but
with an empty function body.

Each test program in the Sandstorm test suite is instrumented via a macro that runs
the specified code block for a number of warm up rounds, and then starts collecting time
differences between wrapped calls to the clock_gettime() function of the C standard
library, using the CLOCK_MONOTONIC_RAW clock option, for a number of profile runs.
During the measurements, the average overhead between two consecutive calls to the
time stamp function was measured to be between 83ns and 85ns and subtracted from
each measurement. With almost all measurements in the microsecond range, the timer
resolution is precise enough to allow for a meaningful distinction of measurement results.
To get realistic, yet static data for byte vectors, a helper function repeatedly reads the
contents of the html test case3 from Snappy’s repository up to the maximum transmitted
size into memory.

At the end of each profile run, the data is written out as comma-separated values
(CSV). The resulting data file is processed using the Numpy package4 and plotted with
Matplotlib [136]. Unless stated otherwise, all numbers discussed refer to the median of
the measurement results.

5.4.1 Sandcrust Primitives Overhead
In this section, we discuss the overhead introduced by Sandcrust’s primitives, shown in
Figure 5.1. For a minimal example, we wrap the abs(3) [137] function of the C standard
library. The box plot shows the following data: The line in the middle of each box shows
the median, the symbols show the mean of the collected data. The boxes extend to the
first and third quartiles, i.e. from 25% to 75% of the measured values. The whiskers
show the lowest value still within 1.5 interquartile range (IQR) (the value difference
between the first and the third quartile) of the first quartile, and the highest value within
1.5 IQR of the third quartile.

The baseline column shows a barely measurable duration of 0.001-0.002µs for the local
execution of the wrapper function. In the next column, Sandcrust’s single invocation
takes 1166µs and 1192µs for the pipe and SHM-based implementations, respectively, a
clear advantage in overhead compared to the first invocation in a stateful sandbox. This is
because the first invocation includes the overhead of 1469µs (1412µs for SHM) seen in the
init column, which reflects the more complex initialization work of sandcrust_init()
and sandcrust_init_with_shm_size() functions, respectively.

The slightly higher time of 1506µs and 1493µs for the first invocation with automatic
setup is only marginally bigger than the sum of the initialization overhead and the over-
head for follow-up invocations in the stateful sandbox of 4.54µs and 4.37µs respectively.
Its remaining overhead can be explained by paging / caching effects, because the mea-
surements of the first invocation function necessarily take place in a freshly spawned
process. The repeated follow-up invocations benefit more directly from a warm up phase
of the benchmark program, which is not available to the init and first invocation measure-
ments. This is also indicated by the higher quantiles in these measurements, compared
3 https://github.com/google/snappy/blob/master/testdata/html
4 http://www.numpy.org/
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Figure 5.1: Sandcrust primitives overhead

to the narrow range in the rest of the measurements, where no warm up rounds were
available. Lastly, explicit termination via sandcrust_terminate() takes around 162µs,
or 177µs for the SHM version.

Differences between the pipe and the SHM versions are hardly visible. In place of
a 4 byte buffered pipe write for data transmission in each direction, the SHM version
issues an unbuffered pipe write from the sandboxed process to the parent to signal the
readiness of the invocation results.

We will look into the IO effects of Sandcrust in more detail in the following section.

5.4.2 Sandcrust IO Overhead

One drawback of compartmentalized software is the overhead for data transfer and IPC.
In the case of Sandcrust, additional overhead is introduced by the need to verify the
data structures returned by the untrusted process. To quantify the effect of the different
components, this test measures all possible combinations against a simple test case at
data sizes from 4 bytes to 16 MiB.

The Local (Memcopy) function takes a reference to a Vector and a slice (a pointer to a
window of a certain size) into a writable buffer as arguments. It then copies the contents
of the vector into the buffer and returns another copy of the second buffer as a vector.
For comparison, a second function (Local (Bincode)) serializes the Vector into the buffer,
and returns a Vector as the result of deserializing the buffer.
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The sandboxed function simply compares the first two bytes of a &Vec<u8> argument
for equality. The vector is transmitted to the sandboxed process to update its state before
the function invocation, which incurs the same copy into a buffer (or pipe) and return of
a newly allocated vector copied out of the buffer. Therefore, albeit the functions are far
from equal, this setup allows the direct comparison of the local and compartmentalized
versions, because it requires the same amount of data transmissions and new memory
allocations. Figure 5.2 yields surprising results:
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Figure 5.2: Comparison of IPC primitives

The Local (Bincode) graph shows a significant overhead over the Local (Memcopy)
baseline. As shown in Figure 5.3, this overhead reaches a maximum at allocations of one
page (4096 bytes), after which the relative slowdown goes down as the cost of copying
data goes up. After an initial extra overhead of 4.35µs, the Sandcrust / Bincode (Pipe)
overhead is quickly dominated by the Bincode overhead, with an additional slowdown of
only 20-25% of the Local (Bincode) version.

The Sandcrust / Bincode (SHM) version exhibits a similar behavior, but surprisingly,
the reduction of parallelism introduced by the sequence of “SHM write → Pipe ready
signal send → Pipe ready signal receive → SHM read“ reverses the slight speedup
compared to Sandcrust / Bincode (Pipe) of 5-20% up to 16 KiB of transmitted data
into a constant slowdown of 40% from 64 KiB upwards. This indicates a parallelism
of serializing and deserializing which also explains the low overhead of the Sandcrust /
Bincode (Pipe) variant compared to a local use of Bincode.

As the example uses byte vectors exclusively, it can benefit fully from Sandcrust’s
optional compile-time custom_vec optimization for byte field transmission. Indeed, the
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Figure 5.3: Relative slowdown of IPC primitives

overhead is reduced considerably and the graphs more closely follow the Local (Memcopy)
baseline. Initially, both Sandcrust / Vec variants are on a par with each other. Starting
from the test system’s page size of 4096 or 212 bytes, the Sandcrust / Vec (SHM) version
shows a speedup of 11% of the pipe version. This can be explained by the pipe mechanism
using more than one page for transmitting data, because the encoding adds an extra 8
bytes to the data size. The SHM version’s advantage grows to the point of 39% at 220

bytes or 1 MiB, after which the speedup rapidly turns into a slowdown as the system’s
cache size of 4 MiB is exceeded.

Altogether, we see from the measurements that an optimized alternative to Bincode
would promise the highest potential for speeding up Sandcrust. Second, the use of SHM
as a means of IPC has surprisingly little performance benefits compared to low-complexity
pipe communication.

A comparison between IO primitives does not give a realistic assessment of a real-
world use, because the biggest strength of monolithic software is that data can be passed
between functions by reference and modified in place. As a comparison, Figure 5.4 shows
the same measurements of Sandcrust’s IPC options, but for a function that takes a
Vector, modifies the first element and returns it. Strictly speaking, the Vec data type is
passed by value, but it encapsulates a pointer to data on the heap.

The effect of sandboxing a function that only takes and returns the „(pointer, capacity,
length) triplet“ [138] that comprises a Rust vector is that the data pointed to by the
pointer has to be made available to the sandboxed process, and the modified result
copied back in its entirety. This is of course disastrous for performance. Figure 5.4 shows
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that for less than a page (212, or 4096 bytes) of data, the optimized Vector handling
in Sandcrust incurs a moderate overhead of less than 5µs, after which it exhibits a
near-linear slowdown to the size of the vector, lower but similar to the Bincode version.
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Figure 5.4: Worst-case copy overhead

5.4.3 Snappy Example Overhead
The extreme overhead of the last measurement is unrealistic in that the measured function
has almost no execution time of its own, making the slowdown factor unrealistically high.
The final measurement setup in this section is similar to the last section, but runs the
compress() and uncompress() functions from Listing 5.1 for a select number of data
sizes, using Sandcrust with the pipe transport and custom_vec optimization. Figure 5.5
shows the results.

There is a remarkable difference in overhead between the compress and the uncompress
functions: The compress function goes down from a slowdown factor of 9.28 to a minimum
of 1.3 at 218 bytes, and stabilizes at a slowdown factor of around 1.5. The sandboxed
uncompress function goes down steadily from a factor of 44 to 16.

This result can be explained by the wrapper signatures:
pub fn compress(src: &[u8]) -> Vec<u8>
pub fn uncompress(src: &[u8]) -> Option<Vec<u8>>

The compress function’s argument and result is handled entirely by the optimized transfer
function for byte vectors. On the other hand, the uncompress result is wrapped in an
Option<T> enum and thus handled by Bincode, which explains the increased slowdown.
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Figure 5.5: Snappy overhead

5.4.4 PNG File Decoding Overhead

To measure the effect of repeated calls to sandboxed functions, the last benchmark
compares the PNG decoding example discussed in Section 5.3.2 against calling local
functions. The test setup uses the pipe transport and custom_vec optimization. However,
the effect of the latter is limited by the complex return value of decode_png, shown in
Listing 5.2. The results are displayed in Figure 5.6, with the test file information shown
in Table 5.25.

The performance measurements are consistent with the preceding tests: The absolute
overhead from 2548µs for file 1 up to 26001µs for file 4 is considerably larger than
comparable transfer sizes of the Snappy uncompress example, but well below the extreme
worst-case copy overhead shown in Figure 5.4. Put in perspective, the relative slowdown
factor shown for each test file in Table 5.2 compares favorably to the single-function
overhead in Section 5.4.3. At a factor of 7.4, the PNG example starts out lower than the
optimized transfers of the sandboxed compress function and reaches a minimum at file
3, similar in size to the sweet spot of 218 bytes for the compress function. Altogether,
while the absolute overheads of each sandboxed function call clearly add up, the relative

5 The file URLs are:
https://www.rust-lang.org/logos/rust-logo-256x256-blk.png
http://files.explosm.net/comics/Rob/myblood.png
https://colorblindprogramming.com/wp-content/uploads/2013/06/objects.png
http://natashenka.ca/wp-content/uploads/2014/01/arithmetic28x11.png
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5 Evaluation

ID File Size (bytes) Sandcrust slowdown factor

1 rust-logo-256x256-blk.png 7460 7.40
2 myblood.png 42693 6.98
3 objects.png 386814 2.07
4 arithmetic28x11.png 894174 3.25

Table 5.2: PNG decoding test data

slowdown compared to a local series of function calls shows that Sandcrust does not
inflict a disproportionate slowdown on complex use cases.
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Figure 5.6: PNG file decoding overhead

The performance evaluation of Sandcrust shows that its overhead is dominated by
the Bincode library. The overhead for short-running, low IO functions like library setup
routines is large in relation to the original function run time, but in the realm of 5µs
of absolute overhead, whereas for long-running functions, the runtime cost of IO would
be negligible with an efficient data serialization and deserialization engine. With the
current implementation, the slowdown factor is typically less than an order of magnitude
and can be as little as 1.3, although due to Bincode’s overhead, it can be substancially
larger for IO-bound functions with complex parameter types. We will discuss future
improvements in the next section.
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They always say that time changes things,

but you actually have to change them yourself.
— Andy Warhol

In the common practice of reusing unsafe software libraries inside otherwise safe Rust
components, wrapper functions provide a safe interface around the unsafe component.
By building a compartmentalization mechanism for those functions, Sandcrust is able to
leverage Rust’s strict typing system to automatically derive the information about data
types that in prior work had to be provided manually via extensive annotations. The
compartmentalization mechanism integrates seamlessly into a Rust project by utilizing
Rust’s macro system to transform the program. As a result, using Sandcrust is as simple
as adding its crate and annotating each wrapper function to be sandboxed. This is in
stark contrast to the external transformation tools, compiler and runtime modifications
and addition of new programming language elements in prior work and the biggest
contribution of this work.

From the decision to use macros follow a number of restrictions on the privilege
separation model. The resulting requirement to sandbox an already running process
is met by commodity sandboxing solutions like Linux’ Seccomp-BPF. As discussed in
Section 3.4.3, some use cases require careful handling of in-memory resources when
deploying Sandcrust.

The prototype implementation lacks support for function callbacks into the main
program, which is left for future work. This can be implemented by using the techniques
developed for RPCs into a stateful sandbox in the reverse direction: Analogous to the
function generation in Section 4.3.3, an appropriate RPC interface can be generated
from an annotated callback function. In contrast to the endpoint implementation
of Section 4.3.2, the generated RPC endpoint would provide a fixed interface to the
annotated function instead of allowing to call arbitrary remote functions. Instead of the
blocking pipe read currently performed after issuing an RPC, the main process would
use an asynchronous IO mechanism1 to concurrently accept an RPC from the sandboxed
process. It may be necessary to provide a wrapper around the instrumented callback
function that performs conversions of complex C data types before issuing the actual
callback into the main process.

The performance evaluation has identified Bincode, the external Rust library used for
(de-)serializing data for IPC, as having the largest impact on the overhead of Sandcrust.
Speeding up Bincode is therefore the most tangible future work to improve on Sandcrust’s
performance. The remaining overhead measured for an optimized case without Bincode
1 Unfortunately, Rust does not offer an interface to the select() system call yet:
https://github.com/rust-lang/rfcs/issues/1081
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can be attributed almost entirely to Linux IPC primitives used by Sandcrust. The
overhead is therefore inherent to commodity OS’s that lack highly optimized IPC
mechanisms, as available in microkernels like L4 [35] or Nova [139].

Another area of improvement is the tooling available to users of Sandcrust. Once
available in Rust, custom compile time errors2 may provide better feedback if a user
tries to sandbox a function with an incompatible signature. A port of LLVM-based
SOAAP [140] to Rust would enable the user to test compartmentalization hypotheses
for a program compartmentalized with Sandcrust, to validate the protection of sensitive
data structures from unsafe code.

This work raises the question of how to best abstract the paradigm of componentization
in a programming language. Declaring the use of Sandcrust for a function via a function
attribute will likely be possible once Token-based syntax extensions [141] are part of
Rust’s stable interface. Although they would require a rewrite of Sandcrust’s macro
transformation system, the existing compartmentalization mechanism can be reused.

A remaining limitation is that all forms of Rust macros and syntax extensions only
work on a subset of the program’s token tree. This is the primary reason for Sandcrust’s
privilege separation model, as it limits any transformation of the existing program to the
annotated functions. Hence, automatic transformation of the program’s initialization
is not possible from the annotated function. More far-reaching compiler plugins could
eliminate Sandcrust’s limitations on sandboxing library initialization routines and enable
a different privilege separation model that clears memory resources by re-executing the
process. A deeper access to compiler state could also enable sandboxing all functions
originating from a specific crate or executing unsafe code. However, access to such
far-ranging compiler intrinsics is unlikely to ever be offered in Rust’s stable interface.
With the proliferation of sandboxing mechanisms in commodity OS’s, native language
abstractions for sandboxed execution could eliminate most of the shortcomings without
the need for complex compiler plugins.

This work shows that it is possible to make componentization an integral part of
software development. To move beyond damage limitation in the face of unsafe monolithic
legacy software towards least privilege components, safe programming languages should
offer abstractions for the development of componentized software.

2 https://github.com/rust-lang/rust/issues/40872
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Appendix A

Source Code Listings

Listing A.1: Full PNG file decoding example
1 #![allow(non_upper_case_globals)]
2 #![allow(non_camel_case_types)]
3 extern crate libc;
4

5 use libc::{c_char, c_void, size_t, c_int};
6

7 #[macro_use]
8 extern crate sandcrust;
9 use sandcrust::*;

10

11 use std::fs::File;
12 use std::os::unix::fs::MetadataExt;
13 use std::ptr;
14 use std::io::Read;
15

16 type png_struct = c_void;
17 type png_info = c_void;
18 type png_size_t = size_t;
19

20 #[link(name = "png")]
21 extern "C" {
22 fn png_create_read_struct(user_png_ver: *const c_char,
23 error_ptr: *mut c_void,
24 error_fn: *mut u8,
25 warn_fn: *mut u8)
26 -> *mut png_struct;
27 fn png_create_info_struct(png_ptr: *mut png_struct)
28 -> *mut png_info;
29 fn png_sig_cmp(sig: *const u8,
30 start: size_t,
31 num_to_check: size_t)
32 -> c_int;
33 fn png_destroy_read_struct(png_ptr_ptr: *mut *mut png_struct,
34 info_ptr_ptr: *mut *mut png_info,
35 end_info_ptr_ptr: *mut *mut png_info);
36 fn png_set_read_fn(png_ptr: *mut png_struct,
37 io_ptr: *mut c_void,
38 read_data_fn: extern "C" fn(*mut png_struct,
39 *mut u8,
40 size_t));
41 fn png_get_io_ptr(png_ptr: *mut png_struct) -> *mut c_void;
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42

43 fn png_read_info(png_ptr: *mut png_struct,
44 info_ptr: *mut png_info);
45 fn png_get_image_height(png_ptr: *mut png_struct,
46 info_ptr: *mut png_info)
47 -> u32;
48 fn png_get_rowbytes(png_ptr: *mut png_struct,
49 info_ptr: *mut png_info)
50 -> u32;
51

52 fn png_read_image(png_ptr: *mut png_struct,
53 row_pointers: *mut *mut u8);
54

55 fn setjmp(env: *mut c_void) -> c_int;
56 fn longjmp(env: *mut c_void, val: c_int);
57 fn png_set_longjmp_fn(png_ptr: *mut png_struct,
58 longjmp_fn: unsafe extern "C" fn(*mut c_void,
59 c_int),
60 jmp_buf_size: size_t)
61 -> *mut c_void;
62 }
63

64

65 #[warn(non_camel_case_types)]
66 static mut png_ptr: *mut png_struct = 0 as *mut png_struct;
67 static mut info_ptr: *mut png_info = 0 as *mut png_struct;
68

69

70 /// Read file at path into a buffer.
71 fn read_file(path: &str) -> Vec<u8> {
72 let mut file = File::open(path).unwrap();
73 let size = file.metadata().unwrap().size() as usize;
74 let mut buf = vec!(0u8; size);
75 file.read_exact(&mut buf).unwrap();
76 buf
77 }
78

79

80 /// Custom read function for libpng.
81 extern "C" fn callback(callback_png_ptr: *mut png_struct,
82 buf_ptr: *mut u8,
83 count: png_size_t) {
84 unsafe {
85 let mut buf = std::slice::from_raw_parts_mut(buf_ptr,
86 count as usize);
87 let image_ptr = png_get_io_ptr(callback_png_ptr);
88 let image: &mut &[u8] = ::std::mem::transmute(image_ptr);
89 image.read_exact(&mut buf).unwrap();
90 }
91 }
92

93

94 /// Read png image into a vector of row byte vectors.
95 sandbox!{
96 fn decode_png(png_image: &[u8]) -> Result<Vec<Vec<u8>>, String> {
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97 unsafe {
98 // jmp buf size is 200 in this particular setup
99 let jmp_buf_size: size_t = 200;

100

101 // this call mimics the define in png.h:
102 // # define png_jmpbuf(png_ptr) \
103 // (*png_set_longjmp_fn((png_ptr), longjmp, (sizeof (jmp_buf))))
104 if 0 != setjmp(png_set_longjmp_fn(png_ptr, longjmp,

jmp_buf_size)) {↪→

105 return Err("read failed in libpng".to_owned());
106 }
107

108 let image_ptr: *mut c_void = ::std::mem::transmute(&png_image);
109 png_set_read_fn(png_ptr, image_ptr, callback);
110

111 png_read_info(png_ptr, info_ptr);
112 let height = png_get_image_height(png_ptr, info_ptr) as usize;
113

114 let mut result = Vec::with_capacity(height);
115 let rowbytes = png_get_rowbytes(png_ptr,info_ptr) as usize;
116

117 // internal array of row pointers to feed to libpng
118 let mut rows = vec![ptr::null_mut() as *mut u8; height];
119

120 for i in 0..height {
121 let mut row = vec![0u8; rowbytes];
122 rows[i] = row.as_mut_ptr();
123 result.push(row);
124 }
125 png_read_image(png_ptr, rows.as_mut_ptr());
126 Ok(result)
127 }
128 }
129 }
130

131

132 /// Initialize libpng.
133 sandbox!{
134 fn png_init() -> Result<(), String> {
135 unsafe {
136 // for now, duplication is necessary
137 // https://stackoverflow.com/questions/21485655/how-do-i-use-c-pr c

eprocessor-macros-with-rusts-ffi↪→

138 let ver = std::ffi::CString::new("1.6.28").unwrap();
139 let ver_ptr = ver.as_ptr();
140

141 png_ptr = png_create_read_struct(ver_ptr, ptr::null_mut(),
ptr::null_mut(), ptr::null_mut());↪→

142 if png_ptr.is_null() {
143 return Err("failed to create png_ptr".to_owned());
144 }
145 info_ptr = png_create_info_struct(png_ptr);
146 if info_ptr.is_null() {
147 png_destroy_read_struct(&mut png_ptr, ptr::null_mut(),

ptr::null_mut());↪→
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148 return Err("failed to create info_ptr".to_owned());
149 }
150 }
151 return Ok(());
152 }
153 }
154

155

156 /// Test argument file type.
157 sandbox!{
158 fn is_png(buf: &[u8]) -> bool {
159 let buf_ptr = buf.as_ptr();
160 let size = buf.len() as size_t;
161 unsafe {
162 if png_sig_cmp(buf_ptr, 0, size) != 0 {
163 return false;
164 }
165 }
166 return true;
167 }
168 }
169

170

171 fn main() {
172 if let Some(arg1) = std::env::args().nth(1) {
173 let file_buf = read_file(&arg1.as_str());
174 if !is_png(&file_buf[0..8]) {
175 panic!("no PNG!");
176 }
177 png_init().unwrap();
178 #[allow(unused_variables)]
179 let vec = decode_png(&file_buf).unwrap();
180 } else {
181 println!("usage: png <png file>");
182 }
183 }
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Acronyms

ABI Application Binary Interface 41

ACL Access Control List 5, 6, 14

API application programming interface 5, 6, 13–15, 18, 19, 23, 25, 27, 29, 34

ASLR address space layout randomization 4

AST Abstract Syntax Tree 18–20, 31, 34, 37–39

BBN Bayesian Belief Network 3

CFI Control Flow Integrity 7

COM Component Object Model 8

CPU Central Processing Unit 16

CSV comma-separated values 46

CVE Common Vulnerabilities and Exposures 44

DIFC Decentralized Information Flow Control 8

DRTM dynamic root of trust for measurement 11

EPT Extended Page Table 11

FFI Foreign Function Interface 12, 13, 19, 25, 42, 43

IO Input / Output 17, 33, 47, 49, 51

IPC Inter-process communication 15, 17, 20, 22, 25, 26, 29, 31, 33, 35, 36, 38, 47, 49

IQR interquartile range 46

OS operating system 1, 2, 5–7, 20, 22

PDF Portable Data Format 7

PID Process ID 20
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Acronyms

PNG Portable Network Graphics 45

RAII Resource Acquisition Is Initialization 12

RAM Random access memory 33

RPC Remote Procedure Call 8, 10, 22, 25, 26, 35–38

SFI Software Fault Isolation 7, 11

SHM shared memory 22, 29, 34, 46–49

SIP Software-Isolated Processes 6

SLOC Source Lines of Code 3, 10, 43

TCB Trusted Computing Base 4, 5, 7, 10, 11, 18, 20, 33

URL Uniform Resource Locator 51

vDSO virtual dynamic shared object 22

VMM Virtual Machine Monitor 9, 11
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