
Sandcrust: Automatic Sandboxing of Unsafe
Components in Rust

Benjamin Lamowski
benjamin@lamowski.net

Carsten Weinhold, Adam Lackorzynski,
Hermann Härtig

Department of Computer Science
TU Dresden, Germany

{firstname}.{lastname}@tu-dresden.de

Abstract
System-level development has been dominated by traditional
programming languages such as C and C++ for decades.
These languages are inherently unsafe regarding memory
management. Even experienced developers make mistakes
that open up security holes or compromise the safety proper-
ties of software. The Rust programming language is targeted
at the systems domain and aims to eliminate memory-related
programming errors by enforcing a strict memory model
at the language and compiler level. Unfortunately, these
compile-time guarantees no longer hold when a Rust pro-
gram is linked against a library written in unsafe C, which
is commonly required for functionality where an implemen-
tation in Rust is not yet available.
In this paper, we present Sandcrust, an easy-to-use sand-

boxing solution for isolating code and data of a C library in
a separate process. This isolation protects the Rust-based
main program from any memory corruption caused by bugs
in the unsafe library, which would otherwise invalidate the
memory safety guarantees of Rust. Sandcrust is based on
the Rust macro system and requires no modification to the
compiler or runtime, but only straightforward annotation of
functions that call the library’s API.

CCS Concepts • Software and its engineering → Soft-
ware reliability; Software safety; Reusability;

1 Introduction
Traditional systems programming languages such as C and
C++ cannot enforce memory safety and control-flow in-
tegrity during program execution. As a result, programs

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
PLOS’17, October 28, 2017, Shanghai, China
© 2017 Copyright held by the owner/author(s). Publication rights licensed
to Association for Computing Machinery.
ACM ISBN 978-1-4503-5153-9/17/10.
https://doi.org/10.1145/3144555.3144562

written in these languages are often vulnerable to buffer over-
flows, use-after-free bugs, or dangling pointers, all of which
may compromise security and safety properties of a system.
In contrast, modern programming languages like Rust pro-
vide a strict memory model that is enforced at compile time.
Whole classes of bugs that plague C and C++ programs are
eliminated, because the compiler can guarantee that memory
accesses at run time are safe under that model. Nevertheless,
Rust is still young and, for the foreseeable future, software
stacks for real-world use cases will rely on legacy code bases
written in unsafe languages, because there is no Rust-based
equivalent yet. Rust bridges this functionality gap with its
foreign function interface (FFI), which allows for calls into
existing libraries written in languages such as C. This inte-
gration of legacy functionality is seamless, as code and data
structures of these libraries reside in the same address space
as the main program written in Rust. The downside of this
approach is that compile-time guarantees about memory
safety become void as soon as a programming error in the
C-based library causes a buffer overflow, out-of-bounds read,
or other memory access violation.
In this paper, we present Sandcrust, a non-invasive and

easy-to-use system to automatically sandbox unsafe C code
in an isolated process. Our solution is based on the macro
system of Rust. It translates, at compile-time, annotated func-
tions wrapping the C library’s API into remote procedure
calls (RPC) to a library instance running in a sandboxed pro-
cess; Sandcrust also keeps global variables in sync. As macro
support is part of the stable branch of Rust, our solution does
not require modifications to the compiler or runtime system.
The contribution of Sandcrust is that the safety advantage
of Rust over C or C++ remains, even if parts of the program
rely on unsafe and potentially buggy C libraries.
The paper is structured as follows: The next section dis-

cusses basics of the Rust programming language. In Section 3,
we describe the design of Sandcrust and discuss important
parts of its implementation. We evaluate usability and per-
formance in Section 4. In Section 5, we discuss related work
before we conclude with avenues for future work.

2 Background
This section gives a brief overview of the basics of the Rust
language and how they relate to memory safety. We further

51

PLOS’17, October 28, 2017, Shanghai, China B. Lamoswki, C. Weinhold, A. Lackorzynski, H. Härtig

describe Rust’s Foreign Function Interface (FFI) and its macro
system.

Memory Safety Model Rust is a statically typed language
which uses Resource Acquisition Is Initialization (RAII) to
prevent uninitialized variables. Lifetimes of objects are calcu-
lated based on the scope of a binding or explicit annotation. At
the end of their lifetime, resources are deterministically freed
in reverse order of their construction, thereby preventing
use-after-free errors. A cornerstone of the Rust concurrency
model is that variables are read-only by default. Furthermore,
when a variable is passed into a different scope (e.g., as an ar-
gument in a function call), the binding of this variable moves
into that scope, depriving the original scope from access.
However, this strict notion of Ownership can be weakened
by lending variables to functions using References. By explicit
declaration, references can also be mutable. These restric-
tions enable the Rust compiler to detect reader/writer race
conditions at compile time and support automatic memory
management that does not require garbage collection.

Traits Traits specify that certain operations are supported
on a data type; this is similar to a class implementing an
interface in an object-oriented programming language. Rust
has a number of built-in special traits that provide generic
behavior of data types. For example, most primitive types im-
plement the Copy trait, which enables variables to be passed
by value instead of moving them into the scope of a called
function. This way of handling function arguments is both
convenient and an optimization for all types whose memory
representation does not exceed the pointer size of the plat-
form. As of Rust version 1.15, a struct as a composite of
types can derive traits via Procedural Macros, if those traits
are implemented for the members of the struct. Rust traits
in conjunction with procedural macros are a powerful way
to implement serialization and deserialization of complex
data structures. As we will discuss in Section 3.2, these oper-
ations are essential in order to pass function arguments and
return types during RPCs.

Foreign Function Interface Rust provides the unsafe key-
word to denote code blocks that will not be subject to the
safeguards described in the preceding paragraphs. For ex-
ample, the unsafe keyword is necessary to dereference raw
pointers and to call unsafe functions. These two operations
are necessary to interact with external libraries through
Rust’s foreign function interface (FFI). The Rust C FFI is
represented by extern blocks with additional attributes; ex-
ternal libraries are specified in the code via link attributes
such as #[link(name = "owfat")], which is equivalent to
adding the -lowfat flag when linking a C program. It is com-
mon practice to wrap calls to unsafe C functions inside a safe
Rust function. This wrapper is responsible for translating
Rust data types into C data types for all function arguments,
and vice versa for the return type of the function (if any).

Rust Macros During compilation, the Rust compiler walks
the abstract syntax tree (AST) and replaces each node that
matches a macro with the contents specified in the body of
this macro. Matching macros is done recursively. Listing 1
shows an example: When matched on an identifier in line
2, the double macro assumes the identified object imple-
ments the Add trait and doubles its value. When invoked
with a sequence of statements separated by “;“, the macro in
line 3 prints the value of a newly declared variable a before
executing each statement twice.

1 macro_rules! double {
2 ($i:ident) => { $i + $i };
3 ($($s:stmt);+) => {
4 let a = 42;
5 println !(" macro a is {}", a);
6 $($s; $s;)+
7 };
8 }
9
10 fn main() {
11 let a = 1;
12 let two = double !(a);
13 println !(" double {} is {}", a, two);
14 double !(println !(" main a is {}", a); println !("!"));
15 }

Listing 1.Macro Example

The output of this example program is:
double 1 is 2
macro a is 42
main a is 1
main a is 1
!
!

The conflicting output for variable a is a result of Rust’s
hygienic macro system, where variables introduced in macro
expansion are tagged with a distinct syntax context. There-
fore, the println!() in line 5 sees variable a as defined in
line 4, whereas the expanded statements see variable a as
defined in line 14.

3 Design and Implementation
Sandcrust is targeted at applications written in Rust that
must – for functional reasons – also link against libraries
developed in unsafe languages like C. We assume that the
developer chose Rust over C or C++, because it is a much
safer programming language and one that does not sacrifice
performance for this property. Consequently, the goal of
Sandcrust is to protect the Rust-based main program from
unsafe code in libraries, which would otherwise void the
memory safety and control-flow integrity guaranteed by the
Rust compiler.

3.1 General Design
When using standard toolchains, the safe code generated
by the Rust compiler shares a single address space with the
unsafe and potentially buggy libraries. Therefore, Sandcrust
must isolate both code bases and their data from each other.
Isolation can be achieved by moving the unsafe library code
to a separate process, where it can be sandboxed.

52

Sandcrust PLOS’17, October 28, 2017, Shanghai, China

Sandboxing A sandbox is an instantiation of the Principle
of Least Privilege [14]. It aims to minimize access permis-
sions and isolate certain software components to limit the
potential harm those components can do to the rest of the
system. Sandbox implementations of modern monolithic op-
erating systems employ a combination of per-process access
control at the system-call level and hardware-based isola-
tion [5]. FreeBSD’s Jails [8] pioneered the concept; Linux
offers several solutions, including Seccomp-BPF [3], a rule-
based system-call filter that is complemented by Namespaces
to virtualize resources such as the file system and user IDs.
The specific details of a sandbox implementation are or-

thogonal to the problem of splitting a monolithic program
into two parts; they are therefore out of scope for this paper.
The design and implementation of Sandcrust as discussed in
the following is targeted at Seccomp-BPF and Linux names-
paces, but could be adapted to other sandbox solutions, too.

Making the Cut To be practical, Sandcrust’s method of
separating safe and unsafe code must be non-invasive and
easy to use. A sensible boundary is the API of the unsafe li-
brary. Thus, process-local function calls must be replaced by
RPCs into the sandboxed process. As described in Section 2,
each foreign function implemented in a C library is usually
wrapped by a Rust function. This function transforms Rust
data types passed as function arguments into the Rust repre-
sentations of the C data types declared in the library’s header
file. Some of these transformations must be placed in unsafe
code blocks, like those involving raw pointers. Furthermore,
C APIs often blend error codes and return values, a practice
that is discouraged in Rust and therefore translated by the
wrapper into idiomatic use of Option and Result objects.

We decided to apply Sandcrust’s macro transformations
to the Rust wrappers, and not the original, unsafe C function.
Due to this design choice, we isolate all unsafe operations
in the sandboxed part of the program, thereby upholding
Rust’s safety guarantees for the main program.

Program Transformation The transformation of local
function calls into RPCs should be transparent to the appli-
cation developer. Ideally, she should not have to do anything
except for enabling Sandcrust for specific (or all) libraries.
Most prior work on automatic software compartmentaliza-
tion is based on source-to-source translation or requires
modification of the compiler. These approaches are highly
invasive and rarely make it into production toolchains. For-
tunately, the Rust toolchain enables access to the AST in
simpler ways: via compiler plugins and through macros.
Compiler plugins come as Lint plugins and Syntax exten-
sions. Lint plugins extend the correctness checks of the Rust
compiler, but are unable to manipulate the AST. In contrast,
syntax extensions can manipulate the AST by running Rust
code; they do not just match against patterns. Both syntax
extensions and macros can be packaged in a crate and used in
any program. But to function, syntax extensions need access

to Rust’s internal compiler API, which is only available in the
unstable version of the Rust compiler and runtime. Macros
are available in stable versions of Rust.

To maximize maintainability and availability, we decided
against syntax extensions and instead built Sandcrust on the
Rust macro system. Macros are a form of monomorphization:
the generation of specialized code from a generic template.
A limitation of this approach is that each transformation of
the AST happens in the context of the matched node (i.e.,
during transformation of a function, we have no access to
other functions in the AST). However, we found that this
form of AST transformation is sufficient to create a sandbox
in a separate process and forward function calls to it.

3.2 Process Model and Inter-Process
Communication

Wewill discuss the details of the macro-based program trans-
formation and how developers use it in Section 3.3. But first,
we explain how Sandcrust creates sandboxed processes and
how its implements RPC.

ProcessModel Aprogram that uses Sandcrust links against
unsafe libraries in the same way as an ordinary Rust pro-
gram. Thus, the binary includes the unsafe code from the
libraries, but also code that is injected by Sandcrust’s RPC
wrapper macros. Before making the first RPC request, this
code creates a child process using the fork system call. The
child will immediately branch into a service loop, whereas
the parent process resumes as the main program. The service
loop is generated from macros as well; it waits for RPCs to
execute unsafe library functions as requested by the func-
tion wrappers in the main program. This approach is dif-
ferent from other application sandboxes like the one used
by Google Chrome: it re-executes the Chrome binary with
a special command-line switch to spawn new sandboxed
render processes [13]. Our approach has three advantages:
(1) the application’s build process need not be adapted to cre-
ate a separate binary (e.g., one that only contains the unsafe
library), (2) it is not necessary to add additional command-
line parsing to the main program, and (3) code and global
variables are at identical addresses in both processes.

Inter-Process Communication Our Sandcrust prototype
uses two Unix pipes to send RPC requests and receive re-
sponses. We also prototyped a shared-memory based solu-
tion, but it showed no substantial performance advantage as
it still needed memory copying and synchronization-related
system calls. We therefore do not discuss it in this paper.
To forward function arguments and return values to an-

other process, Sandcrust must be able to serialize and deseri-
alize any data type used by the unsafe library’s API. Rust does
not offer built-in support for this task, but with the popular
serialization and deserialization framework Serde1,there is a

1https://serde.rs/

53

PLOS’17, October 28, 2017, Shanghai, China B. Lamoswki, C. Weinhold, A. Lackorzynski, H. Härtig

sandbox_setup()
loop {

}

func_helper = get_func_ptr()
func_helper(){

}

get_global_vars()
get_function_args!()
ret = func()
signal_return()
put_global_vars()
return_output_parameters!()
put_var(ret)

run_rpc_loop(){

}

func(){

}

let sandcrust = SANDCRUST.lock()
put_func_ptr(func_helper)
put_global_vars()
put_function_args!()
await_return()
get_global_vars()
get_output_parameters!()
return get_var()

Seccomp-BPF

unsafe

Figure 1. Sandcrust Workflow

third-party solution available. Serde implements Serialize
and Deserialize traits for all data types of the Rust stan-
dard library. Using procedural macros, the developer can
derive Serde-compatible implementations of Serialize and
Deserialize for arbitrary compound data structures:
#[derive(Serialize, Deserialize, PartialEq)]
struct Entity {
x: f32,
y: f32,

}

#[derive(Serialize, Deserialize, PartialEq)]
struct World {
entities: Vec<Entity>,

}

If a C library uses complex data structures, the Sandcrust
annotations must include derive attributes as shown above.
Additionally, Sandcrust uses Bincode2 to encode the Serde
output in a byte stream such that it can be transmitted via
the two Unix pipes. We will discuss potential performance
implications of Bincode in Section 4.

3.3 Sandbox Management via Rust Macros
Figure 1 summarizes how Sandcrust transforms a process-
local function call into an RPC. The left side of the figure
shows pseudo code of a macro-generated replacement for
func. This code runs in the main process and forwards global
variable state and function arguments through the Unix pipe
to the sandboxed process. The request loop in the sandboxed
process receives the global variable state and function argu-
ments, calls the real, unsafe version of func, and then relays
back the updated contents of global variables and the result
of the function call (output parameters and return value).
When signaled by the sandboxed process, the replacement
of func in the main process receives the state updates and
returns the result value to the caller.
The difficulty of implementing this RPC scheme using

macros is rooted in the way macro expansion works in Rust:
Whenever a macro is referenced in the source code, the code
in its body has access only to the small part of the AST that
represents the macro’s matching pattern. A consequence of
2https://crates.io/crates/bincode

this limitation is that macros that transform, for example, a
function definition, cannot manipulate any functions outside
this scope of said function. In the remainder of this section,
we explain how we implemented Sandcrust’s annotation
macros and how code snippets generated by isolated macro
instantiation can cooperate as shown in Figure 1.

Transforming Function Wrappers Sandcrust’s transfor-
mation macros work by annotating each wrapper of an un-
safe C function with sandbox!{}. The function signatures
matched by this macro include the argument types in the
signature (e.g., func(a: i32, b: Vec<u8>)). To generate
a function-call statement for this function, the types need to
be stripped away, resulting in func(a, b). However, care
must be taken that elements of the argument list do not be-
come un-destructible, which impedes recursive matching of
the argument list as a list of expressions: “a: i32“ would
appear as a single AST node that is no longer matched by
the sandcrust_strip_types!{} macro.
Listing 2 shows the implementation from our prototype.

A function without any arguments is matched by line 6.
Line 5 starts, using Push Down Accumulation, the recursion
that builds up the function-call statement without type info
(after “->“ in the macro). The first match in line 2 performs
the strip and recursive invocation, if there are still more
arguments in the $($tail:tt) list. Finally, line 3 matches a
function with one remaining “&mut“ argument, strips away
the type and outputs a function invocation in place of the
macro, with the added argument. To support other types
of parameters (i.e., non-mutable, reference), three pairs of
match arms structurally similar to lines 2 and 3 are necessary.

Managing the Sandbox Process Many libraries maintain
internal state across multiple API calls. To preserve this hid-
den state, Sandcrust must keep the sandboxed process alive
for the entire run time of the program. To this end, Sandcrust
encapsulates process ID and communication channels in a
global library object. This object is initialized on first use by
help of the lazy_static crate. Additionally, the RPC service
loop must know about all transformed wrapper functions in
order to call them. As individual macro transformations do
not have access to the global AST, calls to wrapper functions
cannot be added to the service loop directly. However, stable
versions of Rust do not provide a way to generate a new
identifier like func_wrapped(). We worked around this lim-
itation by adding for each transformed function a trait to an
otherwise empty struct SandcrustWrapper, which is also
defined in the library crate. A carefully programmed block
of unsafe code obtains a function pointer to the generated
trait method, which is then passed to the RPC loop in the
sandboxed process in order to call this method.

3.4 Features and Limitations
Sandcrust can automatically handle any native or derived
data type that implements the Serialize and Deserialize traits

54

Sandcrust PLOS’17, October 28, 2017, Shanghai, China

1 macro_rules! sandcrust_strip_types {
2 (($head:ident : &mut $var_type:ty, $($tail:tt)+) -> ($f:ident($($body:tt)*))) => (sandcrust_strip_types !(($($tail)+) -> ($f($($body)* &mut

$head ,))));
3 (($head:ident : &mut $var_type:ty) -> ($f:ident($($body:tt)*))) => ($f($($body)* &mut $head));
4
5 ($f:ident($($tail:tt)+)) => (sandcrust_strip_types !(($($tail)+) -> ($f())));
6 ($f:ident()) => ($f());
7 }

Listing 2. Macro implementation

of the Serde framework. By design, we exclude raw pointers
because they are unsafe. Handling C pointers, which are also
unsafe, is the responsibility of the function wrapper, but is
done in the sandboxed process. Sandcrust also synchronizes
mutable foreign globals (i.e., mutable global variables defined
in the C library) via the sandcrust_wrap_global! macro.
Function callbacks from within a library are supported

within the sandboxed process, as demonstrated in the libpng
case study in Section 4. Our prototype does not support
callbacks into the main process, but this feature could be
added. However, the setjmp/longjmp pair of C functions
is restricted to the sandboxed process; our libpng example
makes use of this feature. We intentionally do not support
longjmping into the main process, because these “non-local
gotos“ jump upwards in the call stack, the outcome of which
is undefined, if the calling function has already returned at
the time of the longjmp; it is also prone to memory leaks.
Finally, Sandcrust cannot detect semantically incorrect

results produced by unsafe code in the sandboxed process.
This is a fundamental limitation of any sandboxing solution.

4 Evaluation
We evaluate Sandcrust based on two unsafe C libraries: a
compression library that served as the FFI example in Chap-
ter 5.9 of the Rust Book and the image codec libpng.

1 #[macro_use]
2 extern crate sandcrust;
3 extern crate libc;
4 use sandcrust ::*;
5 [...]
6 sandbox !{
7 pub fn compress(src: &[u8]) -> Vec <u8> { [...] }
8 }
9 sandbox !{
10 pub fn uncompress(src: &[u8]) -> Option <Vec <u8>> {
11 unsafe {
12 [...]
13 if snappy_uncompress(psrc , srclen , pdst , &mut dstlen) == 0 {
14 dst.set_len(dstlen as usize);
15 Some(dst)
16 } else {
17 None // SNAPPY_INVALID_INPUT
18 }
19 }
20 }
21 }

Listing 3. Instrumentation of Snappy Compression Library

Sandboxing Snappy Listing 3 shows how to import the
Sandcrust crate and how to annotate the wrapper functions
compress and uncompress, requiring nothing more than
encompassing them with the sandbox!{} macro. Although
not shown in this example, Sandcrust annotations with this

macro can be packaged in the same library crate that provides
the FFI function wrappers.

Sandboxing libpng In the second,more complex case study,
we sandboxed libpng, which suffered from an impressive
number of security issues in the past. This library has a
highly complex API, for which Listing 4 lists only the wrap-
pers that encapsulate libpng functions used in our example.
The callback function is used to read PNG image data from
a buffer and is called from within the sandbox.

1 fn read_file(path: &str) -> Vec <u8 >;
2 fn png_init () -> Result <(), String >;
3 fn is_png(buf: &[u8]) -> bool;
4 extern "C" fn callback(callback_png_ptr: *mut png_struct ,
5 buf_ptr: *mut u8, count: png_size_t);
6 fn decode_png(png_image: &[u8]) -> Result <Vec <Vec <u8>>, String >;

Listing 4. Function Signatures for libpng

Benchmark Setup We measured Sandcrust’s overhead on
an Intel Core-i7 5600U CPU, running a Linux 4.9 kernel and
Rust 1.16. We instrumented our test programs with a macro
that runs several warm-up rounds before measuring the run
time of a sandboxed function call using clock_gettime. We
determined the time that elapsed between two consecutive
calls of clock_gettime to be between 83ns and 85ns , which
we subtracted from all measurements. Since all measure-
ments are in the order of microseconds or more, the system
clock’s resolution is sufficient. Unless stated otherwise, all
figures represent the median of several benchmark runs.

Microbenchmarks We sandboxed the abs function of the
standard C library, to determine the overhead of Sandcrust.
Calling this function directly takes in the order of one to two
nanoseconds. Creating and initializing the sandbox process
took 1469 µs, which contributed the majority of the over-
head of 1506 µs for calling the sandboxed instance abs for
the first time. Subsequent invocations took 4.54 µs. Explicit
termination of the sandbox process took 162 µs.

Snappy Performance The graph in Figure 2 shows run
times of both unsafe and sandboxed invocations of compress
and uncompress from the Snappy test case, with data sizes
ranging from 4 bytes up to 16MiB. There is a significant
difference in overhead between the compress and the un-
compress functions: The former goes down from a slowdown
factor of 9.28 to a minimum of 1.3 at 218 bytes before stabi-
lizing at a factor of approximately 1.5. The overhead of the
sandboxed uncompress function goes down steadily from a

55

PLOS’17, October 28, 2017, Shanghai, China B. Lamoswki, C. Weinhold, A. Lackorzynski, H. Härtig

28 210 212 214 216 218 220 222 224

uncompressed data size (bytes)

100

101

102

103

104

105

ex
ec

u
ti

on
ti

m
e

(µ
s)

Compress Sandcrust

Uncompress Sandcrust

Compress Local

Uncompress Local

Figure 2. Snappy Overhead

File Size (bytes) Slowdown factor

rust-logo-256x256-blk.png 7460 7.40
myblood.png 42693 6.98
objects.png 386814 2.07

arithmetic28x11.png 894174 3.25

Table 1. PNG decoding test data

factor of 44 to 16. To explain this unintuitive result, we have
to refer to the signatures of the wrapper functions:
pub fn compress(src: &[u8]) -> Vec<u8>
pub fn uncompress(src: &[u8]) -> Option<Vec<u8>>

The result of compress is a potentially large byte array of
type Vec<u8>, which Sandcrust transmits through the Unix
pipes using optimized read and write functions: they transfer
the complete memory that backs a Vec<u8> via a single
read or write call on the file object. In contrast, the result
of uncompress is wrapped in an Option<T> enum, which
is a complex type that must be handled by the third-party
package Bincode. However, Bincode is extremely inefficient
for byte arrays and, unfortunately, we did not have the time
to optimize it like we did for unwrapped Vec<u8> objects.

libpng Performance Table 1 shows overhead factors for
decoding four different PNG images using sandboxed libpng.
As the uncompressed image returned by decode_png must
be handled by Bincode, decoding in the sandboxed process
takes 2 to 7.4 times as long as in the same process, with a
sweet spot between cross-process function-call latency and
data transfer overhead for “objects.png“.

5 Related Work
In 1974, ICOPS [16] pioneered the use of annotated proce-
dures that trap into an RPC runtime to enable distributed
computing. It encountered issues that remained hard prob-
lems in later work such as handling global variables and
pointers. Critical software packages like OpenSSH [12] were
split up manually to prevent privilege escalation; the Priv-
man [9] library aided other developers with this task.

Another line of work is centered around microkernels
like Mach [1] and L4 [10] and aims at reducing the Trusted
Computing Base (TCB) of security-critical components. For
example, the VPFS file system [18] based on the Nizza archi-
tecture [6] isolates cryptographic components from legacy
software running in L4Linux [7]. Similarly, Proxos [15] routes
sensitive system calls to a Private OS using a Virtual Machine
Monitor (VMM). Due to its focus on seamless integration
into an existing development ecosystem, Sandcrust is ill-
suited for such complex re-architecting of systems. However,
it may provide a starting point for future research into better
language support for componentized applications.

Hardware-based support for compartmentalization within
the same address space is proposed by the CHERI system [17,
19]. It enhances theMIPSCPU architecturewith byte-granular
protection through memory capabilities, which could in prin-
ciple replace processes as Sandcrust’s means of isolation.
As a first implementation of Decentralized Information

Flow Control (DIFC), JFLow [11] restricted data access be-
tween different components of a Java program. Privtrans [4]
first applied the idea to C. However, the most comprehen-
sive implementation in Wegde [2] shows that the approach
requires too much manual work for existing software.

The work closest to Sandcrust is Codejail [20]. It isolates
a C program from its libraries without any modifications,
but developers must write new function wrappers, which
in the case of Sandcrust already exist in form of easily-
annotated FFI wrappers. Sandcrust synchronizes global vari-
ables and output parameters seamlessly via Rust macros,
whereas Codejail requires manual instrumentation to com-
mit changes by the sandboxed process to the main program.

6 Conclusion
For the foreseeable future, programs written in safe program-
ming languages such as Rust will have to rely on components
written in unsafe languages like C. In this paper, we intro-
duced Sandcrust, a solution to automatically sandbox unsafe
C libraries with minimal annotation and without any modi-
fication to the development toolchain. Sandcrust shows that
it is possible to contain unsafe behavior in another address
space, thereby upholding safety guarantees of the Rust lan-
guage and compiler. To achieve this, we modify the program
via Rust macros, which can be packaged into a library crate to
provide a turnkey solution. Sandcrust leverages Rust’s strict
typing system to automatically derive information about data
types, while prior work had to rely on manual annotation.

Acknowledgments
The authors would like to thank the anonymous reviewers
for their help on improving this paper. This work has been
supported by research grants from DFG via German prior-
ity program 1648 and the Cluster of Excellence “Center for
Advancing Electronics Dresden” (cfaed).

56

Sandcrust PLOS’17, October 28, 2017, Shanghai, China

References
[1] Michael J. Accetta, Robert V. Baron, William J. Bolosky, David B. Golub,

Richard F. Rashid, Avadis Tevanian, and Michael Young. 1986. Mach: A
New Kernel Foundation for UNIX Development.. In USENIX Summer.
USENIX Association, 93–113.

[2] Andrea Bittau, Petr Marchenko, Mark Handley, and Brad Karp. 2008.
Wedge: Splitting Applications into Reduced-privilege Compartments.
In Proceedings of the 5th USENIX Symposium on Networked Systems
Design and Implementation (NSDI’08). USENIX Association, 309–322.

[3] Ma Bo, Mu Dejun, Fan Wei, and Hu Wei. 2013. Improvements the
Seccomp sandbox based on PBE theory. In Advanced Information Net-
working and Applications Workshops (WAINA), 2013 27th International
Conference on. IEEE, 323–328.

[4] David Brumley and Dawn Song. 2004. Privtrans: Automatically Parti-
tioning Programs for Privilege Separation. In Proceedings of the 13th
Conference on USENIX Security Symposium - Volume 13 (SSYM’04).
USENIX Association.

[5] Ian Goldberg, David Wagner, Randi Thomas, and Eric A. Brewer. 1996.
A Secure Environment for Untrusted Helper Applications.. In USENIX
Security. USENIX Association.

[6] Hermann Härtig, Michael Hohmuth, Norman Feske, Christian Hel-
muth, Adam Lackorzynski, Frank Mehnert, and Michael Peter. 2005.
The Nizza secure-system architecture. In CollaborateCom.

[7] Hermann Härtig, Michael Hohmuth, Jochen Liedtke, Sebastian Schön-
berg, and Jean Wolter. 1997. The Performance of µKernel-Based Sys-
tems.. In SOSP. 66–77.

[8] Poul-Henning Kamp and Robert NMWatson. 2000. Jails: Confining
the omnipotent root. In Proceedings of the 2nd International SANE
Conference, Vol. 43. 116.

[9] Douglas Kilpatrick. 2003. Privman: A Library for Partitioning Ap-
plications.. In USENIX Annual Technical Conference, FREENIX Track.
USENIX, 273–284.

[10] J. Liedtke. 1995. On Micro-kernel Construction. In Proceedings of the
Fifteenth ACM Symposium on Operating Systems Principles (SOSP ’95).
ACM, 237–250.

[11] Andrew CMyers. 1999. JFlow: Practical mostly-static information flow
control. In Proceedings of the 26th ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. ACM, 228–241.

[12] Niels Provos, Markus Friedl, and Peter Honeyman. 2003. Preventing
Privilege Escalation. 12th USENIX Security Symposium (Aug. 2003),
11.

[13] Charles Reis and Steven D. Gribble. 2009. Isolating Web Programs in
Modern Browser Architectures. In Proceedings of the 4th ACMEuropean
Conference on Computer Systems (EuroSys ’09). ACM, 219–232.

[14] J. H. Saltzer and M. D. Schroeder. 1975. The protection of information
in computer systems. Proc. IEEE 63, 9 (Sept. 1975), 1278–1308.

[15] Richard Ta-Min, Lionel Litty, and David Lie. 2006. Splitting Interfaces:
Making Trust Between Applications and Operating Systems Config-
urable. In OSDI, Brian N. Bershad and Jeffrey C. Mogul (Eds.). USENIX
Association, 279–292.

[16] A. van Dam, G. M. Stabler, and R. J. Harrington. 1974. Intelligent
Satellites for Interactive Graphics. Proc. IEEE 62, 4 (April 1974), 483–
492.

[17] Robert NM Watson, Jonathan Woodruff, Peter G Neumann, Simon W
Moore, Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis,
Khilan Gudka, Ben Laurie, et al. 2015. CHERI: A hybrid capability-
system architecture for scalable software compartmentalization. In
Security and Privacy (SP), 2015 IEEE Symposium on. IEEE, 20–37.

[18] CarstenWeinhold and Hermann Härtig. 2008. VPFS: Building a Virtual
Private File System with a Small Trusted Computing Base. In Proceed-
ings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2008 (Eurosys ’08). ACM, 81–93.

[19] Jonathan Woodruff, Robert NM Watson, David Chisnall, Simon W
Moore, Jonathan Anderson, Brooks Davis, Ben Laurie, Peter G Neu-
mann, Robert Norton, and Michael Roe. 2014. The CHERI capability
model: Revisiting RISC in an age of risk. In Computer Architecture
(ISCA), 2014 ACM/IEEE 41st International Symposium on. IEEE, 457–
468.

[20] Yongzheng Wu, Sai Sathyanarayan, Roland H. C. Yap, and Zhenkai
Liang. 2012. Codejail: Application-Transparent Isolation of Libraries
with Tight Program Interactions. In Computer Security – ESORICS
2012: 17th European Symposium on Research in Computer Security, Pisa,
Italy, September 10-12, 2012. Proceedings, Sara Foresti, Moti Yung, and
Fabio Martinelli (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg,
859–876.

57

